#' A Function to run a particle filter with state switching behavior
#'
#' @param num_particles The number of particles for the particle filter for animal movement model
#' @param data A data frame with num_times rows and 2 columns with location data
#' @param mu_val Value for the mean step size
#' @param sigma_val Value for the standard deviation of step size
#' @param mu_theta_val Vector for 2-D Normal mean for projected Normal Distribution
#' @param sigmasq_eta Value for eta
#' @param sigmasq_eps Value for eps
#' @param pi_vals 2 X 2 matrix with markov transition probabilities
#' @return A list containing the path and the log probability of the path
#' @export
run_smc_msm <- function(num_particles, data, mu_val, sigma_val, mu_theta_val, sigmasq_eta, sigmasq_eps, pi_vals){
samp_state <- function(pi){
return(base::sample(1:2, 1, prob= pi))
}
time_points <- nrow(data)
particle_values <- array(0, dim=c(time_points, num_particles, 7))
w <- matrix(0, nrow = num_particles, ncol = time_points)
# Time 1
particle_values[1,,1:2] <- LearnBayes::rmnorm(num_particles, mean = c(data[1,1], data[1,2]), varcov = diag(2)*.1)
theta_tmp <- mnormt::rmnorm(num_particles, mean = mu_theta_val, varcov = diag(2))
theta <- useful::cart2pol(theta_tmp[,1], theta_tmp[,2])$theta
particle_values[1,,3] <- sin(theta)
particle_values[1,,3] <- cos(theta)
particle_values[1,,5] <- truncnorm::rtruncnorm(num_particles, a = 0, b = Inf, mean = mu_val, sd = sigma_val)
particle_values[1,,7] <- sample(1:2, num_particles, replace = T)
descendents <- array(0, dim=c(num_particles, time_points))
#calculate weights
log_w <- LearnBayes::dmnorm(particle_values[1,,1:2], mean = c(data[1,1],data[1,2]), varcov = diag(2) * sigmasq_eps, log = T) -
LearnBayes::dmnorm(particle_values[1,,1:2], mean = c(data[1,1],data[1,2]), varcov = diag(2) * .1, log = T)
w[,1] <- exp(log_w)
log_w <- smcUtils::renormalize(log_w, log = T)
descendents[,1] <- sample(num_particles, replace = T, prob = log_w)
particle_values[1,,] <- particle_values[1,descendents[,1] ,]
# Time 2
# update state
old_state <- particle_values[1,,7]
pi_vec <- pi_vals[old_state,]
particle_values[2,,7] <- apply(pi_vec,1,samp_state)
# propose angles
home_path <- tibble::tibble(x =data[1,1] - particle_values[1, ,1],
y = data[1, 2] - particle_values[1,,2] )
home_angle <- useful::cart2pol(home_path$x, home_path$y)$theta
last_path <- tibble::tibble(x = particle_values[1,,1] - data[1,1],
y = particle_values[1,,2] - data[1,2])
last_angle <- useful::cart2pol(last_path$x, last_path$y)$theta
angles <- cbind(home_angle,last_angle)
particle_values[2,,6] <- useful::cart2pol(theta_tmp[,1], theta_tmp[,2])$theta
for (particle in 1:num_particles){
particle_values[2,particle,3] <- cos(particle_values[2,particle,6] + angles[particle,particle_values[2,particle,7]])
particle_values[2,particle,4] <- sin(particle_values[2,particle,6] + angles[particle,particle_values[2,particle,7]])
# update speed
particle_values[2,particle,5] <- truncnorm::rtruncnorm(1, a = 0, b= Inf, mean = mu_val[particle_values[2,particle,7]], sd = sigma_val[particle_values[2,particle,7]])
}
# update particle locations
particle_values[2,,1:2] <- particle_values[1,,1:2] + particle_values[2,,5] * particle_values[2,,3:4] +
stats::rnorm(num_particles * 2, mean = 0, sd = sqrt(sigmasq_eta))
# calculate weights
log_w <- LearnBayes::dmnorm(particle_values[2,,1:2], mean = c(data[2,1], data[2,2]), varcov = diag(2) * sigmasq_eps, log = T)
w[,2] <- exp(log_w)
log_w <- smcUtils::renormalize(log_w, log = T)
descendents[,2] <- sample(num_particles, replace = T, prob = log_w)
particle_values[2,,] <- particle_values[2, descendents[,2],]
# Time 3:T
for (t in 3:time_points){
# update state
old_state <- particle_values[t-1,,7]
pi_vec <- pi_vals[old_state,]
particle_values[t,,7] <- apply(pi_vec,1,samp_state)
# propose angles
home_path <- tibble::tibble(x =data[1,1] - particle_values[t-1, ,1],
y = data[1, 2] - particle_values[t-1,,2] )
home_angle <- useful::cart2pol(home_path$x, home_path$y)$theta
last_path <- tibble::tibble(x = particle_values[t-1,,1] - particle_values[t-2,,1],
y = particle_values[t-1,,2] - particle_values[t-2,,2])
last_angle <- useful::cart2pol(last_path$x, last_path$y)$theta
angles <- cbind(home_angle,last_angle)
particle_values[t,,6] <- useful::cart2pol(theta_tmp[,1], theta_tmp[,2])$theta
for (particle in 1:num_particles){
particle_values[t,particle,3] <- cos(particle_values[t,particle,6] + angles[particle,particle_values[t,particle,7]])
particle_values[t,particle,4] <- sin(particle_values[t,particle,6] + angles[particle,particle_values[t,particle,7]])
# update speed
particle_values[t,particle,5] <- truncnorm::rtruncnorm(1, a = 0, b= Inf, mean = mu_val[particle_values[t,particle,7]], sd = sigma_val[particle_values[t,particle,7]])
}
# update particle locations
particle_values[t,,1:2] <- particle_values[t-1,,1:2] + particle_values[t,,5] * particle_values[t,,3:4] +
stats::rnorm(num_particles * 2, mean = 0, sd = sqrt(sigmasq_eta))
# calculate weights
log_w <- LearnBayes::dmnorm(particle_values[t,,1:2], mean = c(data[t,1], data[t,2]), varcov = diag(2) * sigmasq_eps, log = T)
w[,t] <- exp(log_w)
log_w <- smcUtils::renormalize(log_w, log = T)
descendents[,t] <- sample(num_particles, replace = T, prob = log_w)
particle_values[t,,] <- particle_values[t, descendents[,t],]
}
index <- rep(0, time_points)
index[time_points] <- sample(num_particles, 1)
path <- array(0, dim=c(time_points,7))
path[time_points,] <- particle_values[time_points,index[time_points],]
for (iter in time_points:2){
index[iter- 1] <- descendents[index[iter], iter]
path[iter - 1,] <- particle_values[iter - 1, index[iter-1],]
}
return(list(path = path, log_pi = sum(log(colMeans(w)))))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.