##' Bootstrapped partial dependence plots for the \code{hi_est} estimator
##'
##' Evaluates a Hirano and Imbens (2004) estimator for \code{n_boot} bootstrap iterations to obtain confidence bands for the estimated PDP.
##'
##' @param formula is the outcome formula.
##' @param variable is the treatment variable.
##' @param data is a data frame to be used for the training.
##' @param newdata is an optional data frame of test data for the PDPs.
##' @param grid sets the values of \code{variable} to evaluate the default is 100 values in range of \code{variable}:
##' grid = seq(min(x), max(x), length.out = 100).
##' @param outcome is the outcome class to be predicted for classification problems.
##' @param n_boot is the number of bootstrap replications.
##' @param p_boot is the proportion of the data to select for each bootstrap replication.
##' @param N is the number of observations to select for calculating the PDPs.
##' @param label is a character-string variable label for \code{variable}.
##' @param clock is a logical indicating whether to time each bootstrap replication.
##' @param test is a logical indicating whether to calculate the pdp for both the \code{data} and \code{newdata}.
##' @param seed is a random seed (default is 8675309).
##' @param treatment_formula is a formula for covariate-balancing the treatment.
##' @param treatment_mod is the type of model for the treatment (default is "Binomial" for factor outcomes or "Normal" otherwise).
##' @param link indicates the type of link function (default is "logit" for \code{treatment_mod = "Binomial"} or \code{treatment_mod = "Ordinal"}).
##' @param ... additional arguments for the \code{hi_est} function.
##' @return \code{bsPDPglm} returns an object with class "bsPDP," a list that includes the following components:
##' \item{variable}{the treatment variable.}
##' \item{pdpData}{the estimated average predictions and standard errors along \code{variable}.}
##' \item{marginData}{the estimated average marginal effects and standard errors along \code{variable}.}
##' \item{trainData}{the original training data.}
##' \item{testData}{the test data.}
##' \item{outcome}{the outcome class (\code{NULL} for outcomes with \code{numeric} class).}
##' \item{trControl}{is not applicable for this method (\code{NULL}).}
##' @export
bsPDP.hi_est <-
function(formula,
variable = NULL,
data,
newdata = NULL,
grid = NULL,
outcome = NULL,
n_boot = 100,
p_boot = 0.6,
N = 1000,
label = NULL,
clock = FALSE,
test = FALSE,
seed = 8675309,
treatment_formula = NULL,
treatment_mod = NULL,
link = NULL,
...) {
set.seed(seed)
data <- model.frame(formula, data)
x <- data[, which(names(data) %in% variable)]
Y <- data[, 1]
if (is.null(newdata)) {
newdata <- data
}
if (is.null(grid)) {
grid = seq(min(na.omit(x)), max(na.omit(x)), length.out = 100)
}
if (is.null(label)) {
label = variable
}
if (is.null(formula)) {
outcome_formula <-
formula(Y ~ x + I(x ^ 2) + gps + I(gps ^ 2) + x * gps)
}
if (is.null(treatment_formula)) {
treatment_formula <- formula(Y ~ 1)
cat("Treatment formula is NULL; estmiating unweighted treatment effects")
}
if (is.null(treatment_mod)) {
if (is.factor(x)) {
treatment_mod <- "Binomial"
} else {
treatment_mod <- "Normal"
}
}
if (is.null(link)) {
if (treatment_mod == "Gamma") {
link = "log"
}
if (treatment_mod == "Binomial" |
treatment_mod == "Ordinal") {
link = "logit"
}
if (treatment_mod == "Normal") {
link = "NULL"
}
}
if (is.null(outcome) & is.factor(data[, 1])) {
outcome = levels(data[, 1])[2]
}
if (is.factor(data[, 1])) {
data[, 1] <- as.numeric(ifelse(data[, 1] == outcome, 1, 0))
}
model <- NULL
pdps <- as.matrix(grid)
pdps.test <- as.matrix(grid)
if (clock == TRUE) {
cat(paste0(
"Began bootstrap replications at ",
noquote(strftime(Sys.time(), "%H:%M:%S")),
". \n"
))
}
for (i in 1:n_boot) {
df <-
data[sample(nrow(data), size = ceiling(p_boot * nrow(data))), ]
model <-
hi_est(
Y = Y,
treat = variable,
treat_formula = formula(treatment_formula),
outcome_formula = formula(outcome_formula),
data = df,
grid_val = grid,
treat_mod = treatment_mod,
link_function = link,
...
)
if (test == TRUE) {
newdf.test <-
newdata[sample(nrow(newdata), size = N, replace = TRUE), -which(names(newdata) %in% variable)]
xp.test <- as.data.frame(cbind(rep(1, length(grid)), grid))
colnames(xp.test)[1:2] <- c("Intercept", variable)
if (degree == 2) {
xp.test <- cbind(xp.test, grid ^ 2)
colnames(xp.test)[3] <- paste0(variable, ".2")
}
xp.test$yhat <-
as.matrix(xp.test[, 1:(degree + 1)]) %*%
as.vector(model$out_mod$coefficients)
xp.test <-
as.data.frame(cbind(xp.test[, variable], xp.test[, 'yhat']))
colnames(xp.test) <- c(variable, 'yhat')
pdps.test <-
cbind(pdps.test, aggregate(xp.test, list(xp.test[, 1]), mean)$yhat)
colnames(pdps.test)[1 + i] <- paste0('yhat', i)
}
newdf <-
df[sample(nrow(df), size = N, replace = TRUE), -which(names(df) %in% variable)]
xp <- as.data.frame(cbind(rep(1, length(grid)), grid))
colnames(xp)[1:2] <- c("Intercept", variable)
if (degree == 2) {
xp <- cbind(xp, grid ^ 2)
colnames(xp)[3] <- paste0(variable, ".2")
}
xp$yhat <-
as.matrix(xp[, 1:(degree + 1)]) %*%
as.vector(model$out_mod$coefficients)
xp <-
as.data.frame(cbind(xp[, variable], xp[, 'yhat']))
colnames(xp) <- c(variable, 'yhat')
pdps <-
cbind(pdps, aggregate(xp, list(xp[, 1]), mean)$yhat)
colnames(pdps)[1 + i] <- paste0('yhat', i)
rm(df, newdf, xp, newdf.test, xp.test, model)
if (clock == TRUE) {
cat(paste0(
"Completed replication ",
i,
" out of ",
n_boot,
" at ",
noquote(strftime(Sys.time(), "%H:%M:%S")),
". \n"
))
}
}
if (test == TRUE) {
for (i in 1:length(grid)) {
if (i == 1) {
margins.test <-
matrix(c(grid[i], rep(NA, n_boot)), nrow = 1, ncol = n_boot + 1)
}
if (i == length(grid)) {
margins.test <- rbind(margins.test, c(grid[i], rep(NA, n_boot)))
}
if (i < length(grid) & i > 1) {
margins.test <-
rbind(margins.test, c(grid[i],
(pdps.test[i + 1,] - pdps.test[i - 1,]) / (grid[i + 1] - grid[i - 1])))
}
}
pdpHat.test <- matrixStats::rowMeans2(pdps.test[, 2:(1 + n_boot)])
pdpSd.test <- matrixStats::rowSds(pdps.test[, 2:(1 + n_boot)])
} else{
pdpHat.test <- c(rep(NA, length(grid)))
pdpSd.test <- c(rep(NA, length(grid)))
}
for (i in 1:length(grid)) {
if (i == 1) {
margins <-
matrix(c(grid[i], rep(NA, n_boot)), nrow = 1, ncol = n_boot + 1)
}
if (i == length(grid)) {
margins <- rbind(margins, c(grid[i], rep(NA, n_boot)))
}
if (i < length(grid) & i > 1) {
margins <-
rbind(margins, c(grid[i],
(pdps[i + 1,] - pdps[i - 1,]) / (grid[i + 1] - grid[i - 1])))
}
}
pdpHat <- matrixStats::rowMeans2(pdps[, 2:(1 + n_boot)])
pdpSd <- matrixStats::rowSds(pdps[, 2:(1 + n_boot)])
pdpData = cbind(grid, pdpHat, pdpSd, pdpHat.test, pdpSd.test)
colnames(pdpData)[1] <- variable
out <- list(
trainData = data,
variable = variable,
pdpData = pdpData,
marginData = marginData,
testData = newdata,
outcome = c(names(data)[1], outcome),
trControl = NULL,
trainMethod = 'hi_est'
)
class(out) <- c('bsPDP', class(out))
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.