R/widekernelpls.fit.R

Defines functions widekernelpls.fit

Documented in widekernelpls.fit

### widekernelpls.fit.R: Kernel PLS fit algorithm for wide data.
###
### Implements an adapted version of the algorithm described in
###  Rannar, S., Lindgren, F., Geladi, P. and Wold, S. (1994) A PLS
###  Kernel Algorithm for Data Sets with Many Variables and Fewer
###  Objects.  Part 1: Theory and Algorithm.
###  \emph{Journal of Chemometrics}, \bold{8}, 111--125.



#' @title Wide Kernel PLS (Rännar et al.)
#'
#' @description Fits a PLSR model with the wide kernel algorithm.
#'
#' @details This function should not be called directly, but through the generic
#' functions \code{plsr} or \code{mvr} with the argument
#' \code{method="widekernelpls"}.  The wide kernel PLS algorithm is efficient
#' when the number of variables is (much) larger than the number of
#' observations.  For very wide \code{X}, for instance 12x18000, it can be
#' twice as fast as \code{\link{kernelpls.fit}} and \code{\link{simpls.fit}}.
#' For other matrices, however, it can be much slower.  The results are equal
#' to the results of the NIPALS algorithm.
#'
#' @param X a matrix of observations.  \code{NA}s and \code{Inf}s are not
#' allowed.
#' @param Y a vector or matrix of responses.  \code{NA}s and \code{Inf}s are
#' not allowed.
#' @param ncomp the number of components to be used in the modelling.
#' @param center logical, determines if the \eqn{X} and \eqn{Y} matrices are
#' mean centered or not. Default is to perform mean centering.
#' @param stripped logical.  If \code{TRUE} the calculations are stripped as
#' much as possible for speed; this is meant for use with cross-validation or
#' simulations when only the coefficients are needed.  Defaults to
#' \code{FALSE}.
#' @param tol numeric.  The tolerance used for determining convergence in the
#' algorithm.
#' @param maxit positive integer.  The maximal number of iterations used in the
#' internal Eigenvector calculation.
#' @param \dots other arguments.  Currently ignored.
#' @return A list containing the following components is returned:
#' \item{coefficients}{an array of regression coefficients for 1, \ldots{},
#' \code{ncomp} components.  The dimensions of \code{coefficients} are
#' \code{c(nvar, npred, ncomp)} with \code{nvar} the number of \code{X}
#' variables and \code{npred} the number of variables to be predicted in
#' \code{Y}.} \item{scores}{a matrix of scores.} \item{loadings}{a matrix of
#' loadings.} \item{loading.weights}{a matrix of loading weights.}
#' \item{Yscores}{a matrix of Y-scores.} \item{Yloadings}{a matrix of
#' Y-loadings.} \item{projection}{the projection matrix used to convert X to
#' scores.} \item{Xmeans}{a vector of means of the X variables.}
#' \item{Ymeans}{a vector of means of the Y variables.} \item{fitted.values}{an
#' array of fitted values.  The dimensions of \code{fitted.values} are
#' \code{c(nobj, npred, ncomp)} with \code{nobj} the number samples and
#' \code{npred} the number of Y variables.} \item{residuals}{an array of
#' regression residuals.  It has the same dimensions as \code{fitted.values}.}
#' \item{Xvar}{a vector with the amount of X-variance explained by each
#' component.} \item{Xtotvar}{Total variance in \code{X}.}
#'
#' If \code{stripped} is \code{TRUE}, only the components \code{coefficients},
#' \code{Xmeans} and \code{Ymeans} are returned.
#' @note The current implementation has not undergone extensive testing yet,
#' and should perhaps be regarded as experimental.  Specifically, the internal
#' Eigenvector calculation does not always converge in extreme cases where the
#' Eigenvalue is close to zero.  However, when it does converge, it always
#' converges to the same results as \code{\link{kernelpls.fit}}, up to
#' numerical inacurracies.
#'
#' The algorithm also has a bit of overhead, so when the number of observations
#' is moderately high, \code{\link{kernelpls.fit}} can be faster even if the
#' number of predictors is much higher.  The relative speed of the algorithms
#' can also depend greatly on which BLAS and/or LAPACK library is linked
#' against.
#' @author Bjørn-Helge Mevik
#' @seealso \code{\link{mvr}} \code{\link{plsr}} \code{\link{cppls}}
#' \code{\link{pcr}} \code{\link{kernelpls.fit}} \code{\link{simpls.fit}}
#' \code{\link{oscorespls.fit}}
#' @references Rännar, S., Lindgren, F., Geladi, P. and Wold, S. (1994) A PLS
#' Kernel Algorithm for Data Sets with Many Variables and Fewer Objects.  Part
#' 1: Theory and Algorithm.  \emph{Journal of Chemometrics}, \bold{8},
#' 111--125.
#' @keywords regression multivariate
#' @export
widekernelpls.fit <- function(X, Y, ncomp, center = TRUE, stripped = FALSE,
                              tol = .Machine$double.eps^0.5,
                              maxit = 100, ...)
{
    ## Initialise
    Y <- as.matrix(Y)
    if(!stripped) {
        ## Save dimnames:
        dnX <- dimnames(X)
        dnY <- dimnames(Y)
    }
    ## Remove dimnames during calculation.
    dimnames(X) <- dimnames(Y) <- NULL

    nobj  <- dim(X)[1]
    npred <- dim(X)[2]
    nresp <- dim(Y)[2]

    TT <- U <- matrix(0, ncol = ncomp, nrow = nobj)# scores
    B <- array(0, c(npred, nresp, ncomp))
    In <- diag(nobj)
    nits <- numeric(ncomp)              # for debugging
    if (!stripped) {
        fitted <- array(0, dim = c(nobj, nresp, ncomp))
        Xresvar <- numeric(ncomp)
    }

    ## Center variables:
    if (center) {
        Xmeans <- colMeans(X)
        X <- X - rep(Xmeans, each = nobj)
        Ymeans <- colMeans(Y)
        Y <- Y - rep(Ymeans, each = nobj)
    } else {
        ## Set means to zero. Will ensure that predictions do not take the
        ## mean into account.
        Xmeans <- rep_len(0, npred)
        Ymeans <- rep_len(0, nresp)
    }

    XXt <- tcrossprod(X)
    YYt <- tcrossprod(Y)

    if (!stripped) Xtotvar <- sum(diag(XXt))

    for (a in 1:ncomp) {
        XXtYYt <- XXt %*% YYt
        ## This avoids problems with negative eigenvalues due to roundoff
        ## errors in zero rank cases, and can potentionally give slightly
        ## faster and/or more accurate results:
        XXtYYt <- XXtYYt %*% XXtYYt

        ## Initial values:
        t.a.old <- Y[,1]
        nit <- 0                        # for debugging
        repeat {
            nit <- nit + 1              # for debugging
            t.a <- XXtYYt %*% t.a.old
            t.a <- t.a / sqrt(c(crossprod(t.a)))
            if (sum(abs((t.a - t.a.old) / t.a), na.rm = TRUE) < tol)
                break
            else
                t.a.old <- t.a
            if (nit >= maxit) {         # for debugging
              warning("No convergence in ", maxit, " iterations\n")
              break
            }
        }
        nits[a] <- nit                  # for debugging

        u.a <- YYt %*% t.a
        utmp <- u.a / c(crossprod(t.a, u.a))
        wpw <- sqrt(c(crossprod(utmp, XXt) %*% utmp))
        TT[,a] <- t.a * wpw
        U[,a]  <- utmp * wpw

        G <- In - tcrossprod(t.a)
        XXt <- G %*% XXt %*% G
        YYt <- G %*% YYt %*% G

        if (!stripped) Xresvar[a] <- sum(diag(XXt))
    }

    W <- crossprod(X, U)
    W <- W / rep(sqrt(colSums(W * W)), each = npred)

    TTtTinv <- TT %*% diag(1 / colSums(TT * TT), ncol = ncol(TT))
    P <- crossprod(X, TTtTinv)
    Q <- crossprod(Y, TTtTinv)

    ## Calculate rotation matrix:
    if (ncomp == 1) {
        ## For 1 component, R == W:
        R <- W
    } else {
        PW <- crossprod(P, W)
        ## It is known that P^tW is right bi-diagonal (one response) or upper
        ## triangular (multiple responses), with all diagonal elements equal to 1.
        if (nresp == 1) {
            ## For single-response models, direct calculation of (P^tW)^-1 is
            ## simple, and faster than using backsolve.
            PWinv <- diag(ncomp)
            bidiag <- - PW[row(PW) == col(PW)-1]
            for (a in 1:(ncomp - 1))
                PWinv[a,(a+1):ncomp] <- cumprod(bidiag[a:(ncomp-1)])
        } else {
            PWinv <- backsolve(PW, diag(ncomp))
        }
        R <- W %*% PWinv
    }

    ## Calculate regression coefficients:
    for (a in 1:ncomp) {
        B[,,a] <- tcrossprod(R[,1:a, drop=FALSE], Q[,1:a, drop=FALSE])
    }

    if (stripped) {
        ## Return as quickly as possible
        list(coefficients = B, Xmeans = Xmeans, Ymeans = Ymeans)
    } else {
        ## Fitted values, residuals etc:
        for (a in 1:ncomp)
            fitted[,,a] <- tcrossprod(TT[,1:a, drop=FALSE], Q[,1:a, drop=FALSE])
        residuals <- - fitted + c(Y)
        fitted <- fitted + rep(Ymeans, each = nobj) # Add mean
        Xvar <- diff(-c(Xtotvar, Xresvar))

        ## Add dimnames:
        objnames <- dnX[[1]]
        if (is.null(objnames)) objnames <- dnY[[1]]
        prednames <- dnX[[2]]
        respnames <- dnY[[2]]
        compnames <- paste("Comp", 1:ncomp)
        nCompnames <- paste(1:ncomp, "comps")
        dimnames(TT) <- dimnames(U) <- list(objnames, compnames)
        dimnames(R) <- dimnames(W) <- dimnames(P) <-
            list(prednames, compnames)
        dimnames(Q) <- list(respnames, compnames)
        dimnames(B) <- list(prednames, respnames, nCompnames)
        dimnames(fitted) <- dimnames(residuals) <-
            list(objnames, respnames, nCompnames)
        names(Xvar) <- compnames
        class(TT) <- class(U) <- "scores"
        class(P) <- class(W) <- class(Q) <- "loadings"

        list(coefficients = B,
             scores = TT, loadings = P,
             loading.weights = W,
             Yscores = U, Yloadings = Q,
             projection = R,
             Xmeans = Xmeans, Ymeans = Ymeans,
             fitted.values = fitted, residuals = residuals,
             Xvar = Xvar, Xtotvar = Xtotvar,
             nits = nits)               # for debugging
    }
}
bhmevik/pls documentation built on July 22, 2022, 5:23 a.m.