#' @title Annotate the vector integrated site by CpG islands.
#'
#' @description After load CpG island informaton from a ucsc data file, this function shows CpG island information
#' related with vector integrated sites. User can get query sequence inserted in CpG site and distribution graph by this function.
#'
#' @usage annoByCpG(hits, randomSet = NULL, mapTool = 'blast', organism = 'hg19', interval = 5000, range = c(-20000, 20000),
#` outpath = '~', cpglen = 300, dbPath = paste0(.libPaths()[1], '/VVIPS/extdata'))
#'
#' @param hits a GR object. This object made from *makeInputs* function.
#' @param randomSet TRUE or FALSE. For random distribution, function makes random set, if user enter TRUE.
#' If this value is FALSE, random distribution analysis is not executed. Default is TRUE.
#' @param mapTool a character. Function serve two types of file such as outputs from BLAST and BLAT.
#' Default is 'blast'. If you want to use BLAT output, use 'blat'.
#' @param organism a single character. This function serves 3 versions of organisms such as hg19, hg38 (Human)
#' and galGal6 (Chicken). Default is 'hg19'.
#' @param interval an integer vector. This number means interval number for distribution analysis. Default is 5000.
#' @param randomSize an integer vector. A random set size. Default is 10000.
#' @param range an integer array. It means the range for highlight region of this analysis. Default range is c(-20000, 20000).
#' @param outpath an string vector. Plots are saved in this path. Default value is R home directory.
#' @param outFile a character vector. Attached ID to the result file name.
#' @param cpglen an integer vector. Validate length of CpG sites in islands.
#' @param dbPath a string vector. Directory path of database files.
#'
#' @return Return a result list is composed by insertion table, distribution table and a GenomicRange object of CpG data.
#'
#'
#' @export
annoByCpG = function(hits, randomSet = TRUE, mapTool = 'blast', organism = 'hg19', interval = 5000, randomSize = 10000,
range = c(-20000, 20000), outpath = '~', outFile, cpglen = 300, dbPath = paste0(.libPaths()[1], '/VVIPS/extdata')){
require(GenomicRanges); require(stringr); require(grDevices); require(ggplot2); require(writexl); require(plyr)
cat('---------- Annotation integrated sites : CpG islands ----------\n')
cat(paste0('Start time : ', date(), '\n'))
if(length(which(c('hg19', 'hg38', 'galGal6') %in% organism)) == 0){
return(cat("You can use hg19/hg38/galGal6 data only. ( Input : ", paste(organism, collapse = ','), ")\n",
'---------- Annotation process is halted. ----------\nFinish time : ', date(), '\n'))
} else {}
if(str_ends(dbPath, pattern = '/')){
dbPath = word(dbPath, start = 1, end = nchar(dbPath), sep = '')
} else {}
if(str_ends(outpath, pattern = '/')){
outpath = word(outpath, start = 1, end = nchar(outpath), sep = '')
} else {}
cat('---------- Loading a gene table ----------\n')
#### 01. Load a gene table
tab_gz = gzfile(description = paste0(dbPath, '/cpgIslandExtUnmasked.txt.gz'), open = "r")
suppressWarnings(dataTable <- read.delim(file = tab_gz, header = FALSE, stringsAsFactors = FALSE))
colnames(dataTable) = c('bin', 'chrom', 'start', 'end', 'name',
'length', 'cpgNum', 'gcNum', 'perCpg',
'perGc', 'obsExp')
close(tab_gz)
dataTable = subset(dataTable, dataTable$length >= cpglen)
dataTable = subset(dataTable, str_detect(dataTable$chrom, '_') == FALSE)
dataTable[,3] = dataTable[,3]+1; dataTable = dataTable[,c(2,3,4,7,9)]; names(dataTable) = c('chr', 'start', 'end', 'cpgNum', 'perCpg')
cat('Done.\n')
if(randomSet){
cat('---------- Make a random set ----------\n')
#### 01. Generate random set
set.seed(123456)
ch_size = readRDS(file = system.file("extdata", paste0(organism, '_chrom.rds'), package = "VVIPS"))
ch_size_num = as.numeric(ch_size$length)
ch_start = cumsum(ch_size_num) - ch_size_num + 1
ch_end = cumsum(ch_size_num)
ch_ratio = (ch_size_num / sum(ch_size_num))
random_set = sample(ch_size$chrom, size = randomSize, replace = TRUE, prob = ch_ratio)
count_ch = plyr::count(random_set); row.names(count_ch) = count_ch$x
count_ch = count_ch[ch_size$chrom,]
count_ch = cbind(count_ch, ch_size_num)
ran_set = apply(count_ch, 1, function(x){sample(c(1:x[3]), size = x[2], replace = FALSE, prob = NULL)})
chr_ran = rep(paste0('chr', count_ch$x), count_ch$freq)
pos_ran = unlist(ran_set)
ran_tab = data.frame('Random' = c(1:randomSize), 'Random_chr' = chr_ran, 'Random_pos' = pos_ran, stringsAsFactors = FALSE)
write.table(ran_tab, file = paste0(outpath, '/', outFile, '_Random_set_', organism, '_cpg.txt'),
quote = FALSE, append = FALSE, sep = '\t', na = '', row.names = FALSE, col.names = TRUE)
cat('Done.\n')
} else {}
cat('---------- Creating a GRanges object ----------\n')
#### 02. Make GR object by a gene table
gr_cpgs = makeGRangesFromDataFrame(dataTable, keep.extra.columns = TRUE, ignore.strand = TRUE)
#### 03. Make interval GR objects of a gene table
ranges = seq(from = range[1], to = range[2], interval)
gr_cpg_dist = vector("list", length = (length(ranges)-1))
for(x in 1:(length(ranges)-1)){
tmp_start = gr_cpgs@ranges@start + ranges[x]
tmp_end = gr_cpgs@ranges@start + ranges[x+1]-1
gr_cpg_dist[[x]] = GRanges(seqnames = as.character(gr_cpgs@seqnames),
ranges = IRanges(start = tmp_start,
end = tmp_end),
dist_label = rep(paste0(ranges[x], ' <= X < ', ranges[x+1]), length(gr_cpgs)),
strand = '*')
}
if(randomSet){
#### 04. Make random GR object
tmp = ran_tab[,c(2,3,3)]
names(tmp) = c('chr', 'start', 'end')
gr_random = makeGRangesFromDataFrame(tmp)
} else {
cat("[WARN] Random distribution analysis will not be executed.\n")
}
cat('Done.\n')
cat('---------- Annotating integrated regions ----------\n')
#### 05. Make gene information
inside_cpg = as.data.frame(findOverlaps(hits, gr_cpgs, type = 'any',
ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(hits[inside_cpg$queryHits,], stringsAsFactors = FALSE)
b = dataTable[inside_cpg$subjectHits,]
inside_tab = cbind(a,b)[,c(6,1:3,8:12)]
names(inside_tab) = c('q_name', 'q_chr', 'q_start', 'q_end', 'chr', 'start', 'end', 'cpgNum', 'perCpg')
if(randomSet){
inside_cpg_ran = as.data.frame(findOverlaps(gr_random, gr_cpgs, type = 'any',
ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(gr_random[inside_cpg_ran$queryHits,], stringsAsFactors = FALSE)
b = dataTable[inside_cpg_ran$subjectHits,]
inside_ran_tab = cbind(a,b)[,c(1:3,6:10)]
names(inside_ran_tab) = c('q_chr', 'q_start', 'q_end', 'chr', 'start', 'end', 'cpgNum', 'perCpg')
dist_cpg_ran = vector("list", length = length(ranges)-1)
dist_cpg_ran_tab = data.frame(stringsAsFactors = FALSE)
} else {}
dist_cpg = vector("list", length = length(ranges)-1)
dist_cpg_tab = data.frame(stringsAsFactors = FALSE)
for(x in 1:(length(ranges)-1)){
dist_cpg[[x]] = as.data.frame(findOverlaps(query = hits,
subject = gr_cpg_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(hits[dist_cpg[[x]]$queryHits,], stringsAsFactors = FALSE)
b = gr_cpg_dist[[x]][dist_cpg[[x]]$subjectHits,]
tmp1 = cbind(a,b)
dist_cpg_tab = rbind(dist_cpg_tab, tmp1)
if(randomSet){
## random
dist_cpg_ran[[x]] = as.data.frame(findOverlaps(query = gr_random,
subject = gr_cpg_dist[[x]],
type = "any", ignore.strand = TRUE),
stringsAsFactors = FALSE)
a = as.data.frame(gr_random[dist_cpg_ran[[x]]$queryHits,], stringsAsFactors = FALSE)
b = gr_cpg_dist[[x]][dist_cpg_ran[[x]]$subjectHits,]
tmp2 = cbind(a,b)
dist_cpg_ran_tab = rbind(dist_cpg_ran_tab, tmp2)
} else {}
}
#### 06. Count the number of hit in each range
count_hit_cpgs = vector("list", length = length(ranges)-1)
if(randomSet){
count_hit_cpgs_ran = vector("list", length = length(ranges)-1)
} else {}
for(x in 1:(length(ranges)-1)){
count_hit_cpgs[[x]] = countOverlaps(query = hits, subject = gr_cpg_dist[[x]], type = "any", ignore.strand = TRUE)
if(randomSet){
count_hit_cpgs_ran[[x]] = countOverlaps(query = gr_random, subject = gr_cpg_dist[[x]], type = "any", ignore.strand = TRUE)
} else {}
}
hits_cpgs = as.numeric(apply(as.data.frame(count_hit_cpgs, stringsAsFactors = FALSE), MARGIN = 2, sum))
if(randomSet){
hits_cpgs_ran = as.numeric(apply(as.data.frame(count_hit_cpgs_ran, stringsAsFactors = FALSE), MARGIN = 2, sum))
} else {}
#### 07. Drawing histograms
ymax_c = max(hits_cpgs)
mid = vector("numeric", length = (length(ranges)-1))
for(x in 1:(length(ranges)-1)){
mid[x] = (ranges[x] + ranges[x+1])/2
}
freq_sites_cpgs = rep(x = mid, times = hits_cpgs)
if(randomSet){
freq_sites_cpgs_ran = rep(x = mid, times = hits_cpgs_ran)
} else {}
dist_cpg_tab = dist_cpg_tab[,c(6,1:3,8:10,13)]
names(dist_cpg_tab) = c('q_name', 'q_chr', 'q_start', 'q_end',
'r_chr', 'r_start', 'r_end', 'range')
cat('Done.\n')
cat('---------- Drawing histograms ----------\n')
count_sites_cpgs = plyr::count(freq_sites_cpgs)[,2]
if(randomSet){
count_sites_cpgs_ran = plyr::count(freq_sites_cpgs_ran)[,2]
count_data = data.frame('Range' = factor(rep(ranges[ranges != 0]/1000, 2), levels = ranges[ranges != 0]/1000),
'Group' = c(rep('Observed', length(count_sites_cpgs)), rep('Random', length(count_sites_cpgs_ran))),
'Count' = c(count_sites_cpgs, count_sites_cpgs_ran),
'Freq' = c(count_sites_cpgs/sum(count_sites_cpgs),
count_sites_cpgs_ran/sum(count_sites_cpgs_ran)))
png(paste0(outpath, '/', outFile, '_Random_distribution_CpGs_', organism, '.png'), width = 1200, height = 750)
c_plot = ggplot(count_data) + geom_bar(aes(x = Range, y = Freq, fill = Group), stat = "identity", position = "dodge") +
lims(y = c(0, max(count_data$Freq))) + ggtitle(label = "Random distribution (CpGs)") +
xlab('Intervals (Kbs)') + ylab("Ratio of Integration Events") + scale_fill_manual(values = c('Dodgerblue', 'skyblue')) +
theme(panel.background = element_rect(fill="white", colour = "white"),
panel.grid.major = element_line(size = 0.5, linetype = 'dotted', colour = 'black'),
axis.line = element_line(colour = "darkgrey"), legend.title = element_blank(),
legend.key.size = unit(0.7, "cm"), plot.title = element_text(hjust = 0.5, face = "bold", size = 15),
legend.text = element_text(size = 13), axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13))
print(c_plot)
dev.off()
result_list = vector("list", length = 4)
result_list[[1]] = inside_tab
result_list[[2]] = dist_cpg_tab
result_list[[3]] = dist_cpg_ran_tab
result_list[[4]] = gr_cpgs
names(result_list) = c('CpG_inside_hits', 'CpG_exp_distribution', 'CpG_random_distribution', 'CpG_data')
count_table = data.frame('Ranges' = paste0(ranges[1:length(ranges)-1], ' <= X < ',
ranges[2:length(ranges)]),
'CpG' = count_sites_cpgs,
'Random_c' = count_sites_cpgs_ran, stringsAsFactors = FALSE)
prop_list_c = suppressWarnings(apply(count_table[,c(2,3)], 1, function(t){prop.test(x = c(t[1], t[2]), n = c(sum(count_sites_cpgs), sum(count_sites_cpgs_ran)), correct = FALSE)}))
count_table = cbind(count_table, 'CpG_p_value' = round(unlist(lapply(prop_list_c, function(t){t$p.value})),3))
} else {
png(filename = paste0(outpath, '/', outFile, '_Distribution_CpGs_', organism, '.png'),
width = 1200, height = 700)
hist_freq = hist(freq_sites_cpgs/1000, breaks = ranges/1000, plot = FALSE)
hist_frequency = hist(freq_sites_cpgs/1000, breaks = ranges/1000,
ylab = 'Density', xlab = "kbs",
ylim = c(0, round(max(hist_freq$density),2)*1.5),
probability = TRUE, main = NULL, col = 'cornflowerblue',
axes = FALSE, cex.lab = 1.3)
axis(side = 1, at = ranges/1000, cex.axis = 1.5)
axis(side = 2, at = seq(0, round(max(hist_freq$density),2)*1.5, 0.01), cex.axis = 1.5)
text(0, round(max(hist_freq$density),2)*1.5, labels = 'CpG', cex = 1.7, font = 2)
arrows(0,0,0,round(max(hist_freq$density),2)*1.5-0.005, length = 0.15, code = 1, lwd = 3)
arrows(min(ranges/1000), round(max(hist_freq$density),2)*1.5-0.005, range[1]/1000*0.025, round(max(hist_freq$density),2)*1.5-0.005, length = 0.1, code = 1)
arrows(max(ranges/1000), round(max(hist_freq$density),2)*1.5-0.005, range[2]/1000*0.025, round(max(hist_freq$density),2)*1.5-0.005, length = 0.1, code = 1)
text(range[2]/2000, round(max(hist_freq$density),2)*1.5-0.01, 'Upstream', cex = 1.5, col = 'black')
text(-(range[2]/2000), round(max(hist_freq$density),2)*1.5-0.01, 'Downstream', cex = 1.5, col = 'black')
dev.off()
result_list = vector("list", length = 3)
result_list[[1]] = inside_tab
result_list[[2]] = dist_cpg_tab
result_list[[3]] = gr_cpgs
names(result_list) = c('CpG_inside_hits', 'CpG_exp_distribution', 'CpG_data')
count_table = data.frame('Ranges' = paste0(ranges[1:length(ranges)-1], ' <= X < ',
ranges[2:length(ranges)]),
'CpG' = count_sites_cpgs,
stringsAsFactors = FALSE)
}
### Writing documents
if(randomSet){
if(!file.exists(paste0(outpath, '/', outFile, '_Distribution_results_CpG_', str_remove_all(Sys.Date(), '-'), '.xlsx'))){
writexl::write_xlsx(list(inside_cpg = result_list[[1]],
dist_freq = count_table,
dist_cpg = result_list[[2]]),
path = paste0(outpath, '/', outFile, '_Distribution_results_CpG_', str_remove_all(Sys.Date(), '-'), '.xlsx'))
} else {cat("[WARN] Result file can not be created because a file with the same name exists.\n")}
} else {
if(!file.exists(paste0(outpath, '/', outFile, '_Distribution_results_CpG_noRandom_', str_remove_all(Sys.Date(), '-'), '.xlsx'))){
writexl::write_xlsx(list(inside_cpg = result_list[[1]],
dist_freq = count_table,
dist_cpg = result_list[[2]]),
path = paste0(outpath, '/', outFile, '_Distribution_results_CpG_noRandom_', str_remove_all(Sys.Date(), '-'), '.xlsx'))
} else {cat("[WARN] Result file can not be created because a file with the same name exists.\n")}
}
cat('---------- Annotation process is finished. ----------\n')
cat(paste0('Finish time : ', date(), '\n'))
return(result_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.