View source: R/discovery_prediction.R
predict_exposure | R Documentation |
Exposures for samples will be predicted using an existing set
of signatures stored in a musica_result
object.
Algorithms available for prediction include a modify version of "lda"
,
and "decompTumor2Sig"
.
predict_exposure(
musica,
table_name,
signature_res,
algorithm = c("lda", "decompTumor2Sig"),
signatures_to_use = seq_len(ncol(signatures(signature_res))),
verbose = FALSE
)
musica |
A |
table_name |
Name of table used for posterior prediction. Must match the table type used to generate the prediction signatures |
signature_res |
Signatures used to predict exposures for the samples
|
algorithm |
Algorithm to use for prediction of exposures. One of
|
signatures_to_use |
Which signatures in the |
verbose |
If |
Returns a A musica_result
object containing
signatures given by the signature_res
parameter and exposures
predicted from these signatures.
data(musica)
data(cosmic_v2_sigs)
g <- select_genome("19")
build_standard_table(musica, g, "SBS96", overwrite = TRUE)
result <- predict_exposure(musica = musica, table_name = "SBS96",
signature_res = cosmic_v2_sigs, algorithm = "lda")
# Predict using LDA-like algorithm with seed set to 1
set.seed(1)
predict_exposure(musica = musica, table_name = "SBS96",
signature_res = cosmic_v2_sigs, algorithm = "lda")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.