View source: R/BASiCS_PriorParam.R
BASiCS_PriorParam | R Documentation |
This is a convenience function to allow partial specification of prior parameters, and to ensure default parameters are consistent across usage within the package.
BASiCS_PriorParam(
Data,
k = 12,
mu.mu = NULL,
s2.mu = 0.5,
s2.delta = 0.5,
a.delta = 1,
b.delta = 1,
p.phi = rep(1, times = ncol(Data)),
a.s = 1,
b.s = 1,
a.theta = 1,
b.theta = 1,
RBFMinMax = TRUE,
FixLocations = !is.null(RBFLocations) | !is.na(MinGenesPerRBF),
RBFLocations = NULL,
MinGenesPerRBF = NA,
variance = 1.2,
m = numeric(k),
V = diag(k),
a.sigma2 = 2,
b.sigma2 = 2,
eta = 5,
PriorMu = c("default", "EmpiricalBayes"),
PriorDelta = c("log-normal", "gamma"),
StochasticRef = TRUE,
ConstrainProp = 0.2,
GeneExponent = 1,
CellExponent = 1
)
Data |
SingleCellExperiment object (required). |
k |
Number of regression terms, including k - 2 Gaussian radial basis functions (GRBFs). |
mu.mu , s2.mu |
Mean and variance parameters for lognormal prior on mu. |
s2.delta |
Variance parameter for lognormal prior on delta when
|
a.delta , b.delta |
Parameters for gamma prior on delta when
|
p.phi |
Parameter for dirichlet prior on phi. |
a.s , b.s |
Parameters for gamma prior on s. |
a.theta , b.theta |
Parameters for gamma prior on theta. |
RBFMinMax |
Should GRBFs be placed at the minimum and maximum of
|
FixLocations |
Should RBFLocations be fixed throughout MCMC, or adaptive
during burn-in? By default this is |
RBFLocations |
Numeric vector specifying locations of GRBFs in units
of |
MinGenesPerRBF |
Numeric scalar specifying the minimum number of genes
for GRBFs to be retained. If fewer than |
variance |
Variance of the GRBFs. |
m , V |
Mean and (co)variance priors for regression coefficients. |
a.sigma2 , b.sigma2 |
Priors for inverse gamma prior on regression scale. |
eta |
Degrees of freedom for t distribution of regresion errors. |
PriorMu |
Indicates if the original prior ( |
PriorDelta |
Scalar character specifying the prior type to use for delta overdispersion parameter. Options are "log-normal" (recommended) and "gamma" (used in Vallejos et al. (2015)). |
StochasticRef |
Logical scalar specifying whether the reference gene for the no-spikes version should be chosen randomly at MCMC iterations. |
ConstrainProp |
Proportion of genes to be considered as reference genes
if |
GeneExponent , CellExponent |
Exponents for gene and cell-specific parameters. These should not be outside of divide and conquer MCMC applications. |
A list containing the prior hyper-parameters that are required to
run the algoritm implemented in BASiCS_MCMC
.
BASiCS_PriorParam(makeExampleBASiCS_Data(), k = 12)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.