learn_MHN: Learn a Mutual Hazard Network from a set of mutation trees

View source: R/learn_MHN.R

learn_MHNR Documentation

Learn a Mutual Hazard Network from a set of mutation trees

Description

This function learns a Mutual Hazard Network from a set of mutation trees in the format of a TreeMHN object.

Usage

learn_MHN(
  tree_obj,
  gamma = 0.5,
  lambda_s = 1,
  Theta_init = NULL,
  M = 100,
  iterations = 500,
  to_mask = integer(0),
  use_EM = FALSE,
  verbose = FALSE,
  MC_threshold = 500,
  increment_M = 0,
  increment_M_bound = 500,
  return_Theta_only = TRUE
)

Arguments

tree_obj

A TreeMHN object

gamma

Penalization parameter in the objective function (Default: 0.5).

lambda_s

Sampling rate (Default: 1).

Theta_init

Initial value of the MHN provided to the optimization procedure (Default: NULL).

M

Number of Monte Carlo samples to be drawn (Default: 100).

iterations

Number of iterations for the EM/MCEM algorithm (Default: 500).

to_mask

An integer vector of indices by column, which is used to mask the off-diagonal entries of an MHN (Default: an empty vector).

use_EM

A boolean value to determine whether the EM/MCEM algorithm is used (Default: FALSE).

verbose

A boolean value to determine whether optimization steps are printed (Default: FALSE).

MC_threshold

A threshold on the maximum number of subtrees of a given tree, above which Monte Carlo sampling will be used (Default: 500).

increment_M

The step size to increment the number of Monte Carlo samples (Default: 0).

increment_M_bound

The upper bound on the number of Monte Carlo samples (Default: 500).

return_Theta_only

A boolean value to determine whether the function returns only the estimated Theta or the TreeMHN object containing the estimated Theta and other parameters (Default: TRUE).

Value

A Mutual Hazard Network Theta

Author(s)

Xiang Ge Luo


cbg-ethz/TreeMHN documentation built on Jan. 29, 2024, 1:29 p.m.