learn_MHN | R Documentation |
This function learns a Mutual Hazard Network from a set of mutation trees in the format of a TreeMHN object.
learn_MHN(
tree_obj,
gamma = 0.5,
lambda_s = 1,
Theta_init = NULL,
M = 100,
iterations = 500,
to_mask = integer(0),
use_EM = FALSE,
verbose = FALSE,
MC_threshold = 500,
increment_M = 0,
increment_M_bound = 500,
return_Theta_only = TRUE
)
tree_obj |
A TreeMHN object |
gamma |
Penalization parameter in the objective function (Default: 0.5). |
lambda_s |
Sampling rate (Default: 1). |
Theta_init |
Initial value of the MHN provided to the optimization procedure (Default: NULL). |
M |
Number of Monte Carlo samples to be drawn (Default: 100). |
iterations |
Number of iterations for the EM/MCEM algorithm (Default: 500). |
to_mask |
An integer vector of indices by column, which is used to mask the off-diagonal entries of an MHN (Default: an empty vector). |
use_EM |
A boolean value to determine whether the EM/MCEM algorithm is used (Default: FALSE). |
verbose |
A boolean value to determine whether optimization steps are printed (Default: FALSE). |
MC_threshold |
A threshold on the maximum number of subtrees of a given tree, above which Monte Carlo sampling will be used (Default: 500). |
increment_M |
The step size to increment the number of Monte Carlo samples (Default: 0). |
increment_M_bound |
The upper bound on the number of Monte Carlo samples (Default: 500). |
return_Theta_only |
A boolean value to determine whether the function returns only the estimated Theta or the TreeMHN object containing the estimated Theta and other parameters (Default: TRUE). |
A Mutual Hazard Network Theta
Xiang Ge Luo
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.