#' Visualize data quality
#'
#' Visualize data quality from the \code{colData} of the
#' \code{SingleCellExperiment} object and return a list of figures in
#' \code{arrangelist} object.
#'
#' @param sce An \code{SingleCellExperiment} object returned from \link{scruff},
#' \link{countUMI}, or \link{tenxBamqc} function.
#' @return A list of \code{grobs} objects ready for plotting
#' @examples
#' data(sceExample, package = "scruff")
#' qcplots(sceExample)
#' @export
qcplots <- function(sce) {
qcDt <- data.table::as.data.table(SummarizedExperiment::colData(sce))
g1 <- .plotTotalReads(qcDt)
g2 <- .plotReadsMappedToGenome(qcDt)
g3 <- .plotReadsMappedToGenes(qcDt)
g4 <- .plotGenomeReadsFraction(qcDt)
g5 <- .plotGeneToGenomeFraction(qcDt)
g6 <- .plotGeneToTotalFraction(qcDt)
g7 <- .plotCounts(qcDt)
g8 <- .plotMtCounts(qcDt)
g9 <- .plotMtCountsFraction(qcDt)
g10 <- .plotGenes(qcDt)
g11 <- .plotFracProteinCodingGenes(qcDt)
g12 <- .plotFracProteinCodingTranscripts(qcDt)
g13 <- .plotMedReadsPerUMI(qcDt)
g14 <- .plotAvgReadsPerUMI(qcDt)
g15 <- .plotMedReadsPerCorrectedUMI(qcDt)
g16 <- .plotAvgReadsPerCorrectedUMI(qcDt)
g17 <- .plotGenesPerMillionReads(qcDt)
return(list(g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13,
g14, g15, g16, g17))
}
.plotTotalReads <- function(qcDt) {
if (!"reads" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(reads),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Total reads") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotReadsMappedToGenome <- function(qcDt) {
if (!"reads_mapped_to_genome" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(reads_mapped_to_genome),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Reads aligned to reference genome") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotReadsMappedToGenes <- function(qcDt) {
if (!"reads_mapped_to_genes" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(reads_mapped_to_genes),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Reads mapped to genes") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotGenomeReadsFraction <- function(qcDt) {
if (!("reads_mapped_to_genome" %in% colnames(qcDt) &
"reads" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = reads_mapped_to_genome / reads,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of aligned reads to total reads") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotGeneToGenomeFraction <- function(qcDt) {
if (!("reads_mapped_to_genome" %in% colnames(qcDt) &
"reads_mapped_to_genes" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = reads_mapped_to_genes / reads_mapped_to_genome,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of gene reads out of aligned reads") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotGeneToTotalFraction <- function(qcDt) {
if (!("reads_mapped_to_genes" %in% colnames(qcDt) &
"reads" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = reads_mapped_to_genes / reads,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of gene reads out of total reads") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotCounts <- function(qcDt) {
if (!"total_counts" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(total_counts),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Total transcripts") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Counts",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotMtCounts <- function(qcDt) {
if (!"mt_counts" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(mt_counts),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Mitochondrial transcripts") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Counts",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotMtCountsFraction <- function(qcDt) {
if (!("mt_counts" %in% colnames(qcDt) &
"total_counts" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = mt_counts / total_counts,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of mitochondrial transcripts") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotGenes <- function(qcDt) {
if (!"genes" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(genes),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Transcribed genes") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Genes",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotFracProteinCodingGenes <- function(qcDt) {
if (!("protein_coding_genes" %in% colnames(qcDt) &
"genes" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = protein_coding_genes / genes,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of protein coding genes") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotFracProteinCodingTranscripts <- function(qcDt) {
if (!("protein_coding_counts" %in% colnames(qcDt) &
"total_counts" %in% colnames(qcDt))) {
return(NULL)
}
g <- ggplot2::ggplot(qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = protein_coding_counts / total_counts,
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5) +
ggplot2::ylim(0, 1) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Fraction of protein coding transcripts") +
ggplot2::labs(color = "Cells") +
.themePublication() +
ggplot2::theme(axis.title.y = ggplot2::element_blank(),
axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotGenesPerMillionReads <- function(qcDt) {
if (!"reads" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(genes * 1000000 / reads),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3,
height = 0),
size = 0.5) +
ggplot2::ggtitle(
paste("Genes detected divided by total number of reads",
"sequenced per million")) +
ggplot2::xlab("Experiment") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = expression(bold(
"(Genes x 1000000 / total reads)")),
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotMedReadsPerUMI <- function(qcDt) {
if (!"median_reads_per_umi" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(median_reads_per_umi),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Median number of reads per UMI") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotAvgReadsPerUMI <- function(qcDt) {
if (!"avg_reads_per_umi" %in% colnames(qcDt)) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(avg_reads_per_umi),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Average number of reads per UMI") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotMedReadsPerCorrectedUMI <- function(qcDt) {
if (!"median_reads_per_corrected_umi" %in% colnames(qcDt)) {
return(NULL)
}
if (sum(qcDt[, median_reads_per_corrected_umi]) == 0) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(median_reads_per_corrected_umi),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Median number of reads per corrected UMI") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
.plotAvgReadsPerCorrectedUMI <- function(qcDt) {
if (!"avg_reads_per_corrected_umi" %in% colnames(qcDt)) {
return(NULL)
}
if (sum(qcDt[, avg_reads_per_corrected_umi]) == 0) {
return(NULL)
}
g <- ggplot2::ggplot(data = qcDt,
ggplot2::aes(
x = factor(experiment, levels = unique(qcDt[, experiment])),
y = log10(avg_reads_per_corrected_umi),
group = factor(experiment, levels = unique(qcDt[, experiment])))) +
ggplot2::geom_boxplot(outlier.color = NA, fill = NA) +
ggplot2::geom_point(
ggplot2::aes(color = as.factor(number_of_cells)),
position = ggplot2::position_jitter(width = 0.3, height = 0),
size = 0.5
) +
ggplot2::xlab("Experiment") +
ggplot2::ggtitle("Average number of reads per corrected UMI") +
ggplot2::labs(color = "Cells") +
ggplot2::scale_y_continuous(name = "Reads",
limits = c(0, NA),
labels = scales::math_format(10^.x)) +
ggplot2::annotation_logticks(sides = "l") +
.themePublication() +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45,
hjust = 1))
return(g)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.