#' Continuous time Generalized Rapid response CUSUM (CGR-CUSUM) helper - matrix
#' formulation of the problem - version 2
#'
#' @description This function calculates the value of the CGR-CUSUM using a
#' matrix formulation of the problem - this can require a lot of available RAM.
#'
#' @inheritParams cgr_cusum
#' @param data \code{data.frame} containing the following named columns:
#' \itemize{
#' \item \code{entrytime} numeric - time of entry into study,
#' \item \code{otime} numeric - time from entry until event,
#' \item \code{censorid} integer - (optional) censoring indicator (0 = right censored, 1 = observed),
#\item \code{cause} factor - cause of event - competing risks.
#' } and optionally additional covariates used for risk-adjustment.
#' @param displaypb boolean Display a progress bar?
#'
#' @return A matrix with 4 named columns:
#' \itemize{
#' \item $time time at which the value of the CGR-CUSUM was determined
#' \item $value value at corresponding time of the CGR-CUSUM
#' \item $exp_theta_t value at corresponding time of the MLE \eqn{\hat{\theta}_t}{\theta_t}
#' \item $S_nu time from which individuals contribute to the chart \eqn{S_\nu}{S_\nu}
#' }
#'
#' @importFrom utils txtProgressBar
#' @importFrom utils setTxtProgressBar
#' @importFrom parallel detectCores
#' @importFrom parallel stopCluster
#' @importFrom parallel parSapply
#' @importFrom parallel makeCluster
#' @importFrom pbapply pbmapply
#' @importFrom pbapply pbsapply
#' @importFrom parallel clusterExport
#'
#' @noRd
#' @keywords internal
#'
#' @author Daniel Gomon
#'
#' @seealso \code{\link{cgrcusum}}
#'
#' @examples
#' \dontrun{
#' require(survival)
#' tdat <- subset(surgerydat, hosp_num == 1)
#' tdat$otime <- tdat$entrytime + tdat$survtime
#' tcbaseh <- function(t) chaz_exp(t, lambda = 0.01)
#' varsanalysis <- c("age", "sex", "BMI")
#' exprfit <- as.formula(paste("Surv(survtime, censorid) ~" ,paste(varsanalysis, collapse='+')))
#' tcoxmod <- coxph(exprfit, data= surgerydat)
#' #Alternatively, cbaseh can be left empty when specifying coxphmod through coxph()
#' cgr2 <- cgr_helper_mat_2(data = tdat, ctimes = unique(tdat$entrytime + tdat$survtime),
#' coxphmod = tcoxmod, cbaseh = tcbaseh, displaypb = TRUE)
#' }
cgr_helper_mat_2 <- function(data, ctimes, coxphmod, cbaseh, ncores, displaypb = FALSE){
#!
#SEE COMMENTS OF CGR_HELPER_MAT_3
#!
#This function consists of the following functions:
#maxoverk: calculate CGI value at specific ctime, considering only patients with entrytime S_i >= k
#maxoverj: Calculate CGR value at specific ctime by applying maxoverk on all relevant starting times (helperstimes)
#fin = apply maxoverj to all required construction times to determine the values of CGR(t) for all ctimes
#TRIPLE APPLY CONSTRUCTION.
#Lambdamat is determined using an mapply on the columns of a matrix which is structured as:
# ctime_1 ctime_2 ctime_3 ctime_4 ................ ctime_p
# i=1 ( )
# i=2 ( accumulated hazard of subject 2 at time in column )
# i=3 ( subject 3 )
# ... ( ... )
# i=p ( )
#
# Then we determine all patients which are relevant for constructing at a certain timepoint
# by indexing over the data (checking their Stimes) and determine their active
# contribution by summing over the column at the desired ctime.
# The number of failures at that timepoint is determined the same way
ctimes <- ctimes[which(ctimes >= min(data$entrytime))]
if(ncores > 1){
#Create a cluster for parallel computing and error check
real_cores <- detectCores()
if(ncores > real_cores){
warning(paste0("More cores requested (", ncores ,") than detected (", real_cores,") by R. \n Proceed at own risk."))
}
cl <- makeCluster(ncores)
} else{
cl <- NULL
}
Lambdafun <- function(entrytime, otime, times, cbaseh){
lamval <- sapply(times, FUN = function(x) {
if(x >= entrytime){
cbaseh(min(x, otime) - entrytime)
} else{0}
})
}
#Lambdafun <- function(y, times, cbaseh){
# lamval <- sapply(times, FUN = function(x) {
# if(x >= y[1]){
# cbaseh(min(x, y[2]) - y[1])
# } else{0}
# })
#}
#---------NEW FCT BODY-------------
#Calculate subject specific failure risk (exp(\beta Z))
riskdat <- calc_risk(data, coxphmod)
#ctimes are already pre-sorted in cgrcusum
#Create matrix containing Lambda_i(t) per patient. Rows represent patient i
if(displaypb){
message("Step 1/2: Determining hazard contributions.")
pboptions(type = "timer")
} else{
pboptions(type = "none")
}
lambdamat <- t(pbmapply(FUN = Lambdafun, entrytime = data$entrytime, otime = data$otime, MoreArgs = list( times = ctimes, cbaseh = cbaseh)))
lambdamat <- lambdamat * as.vector(riskdat)
#OK WE CAN FIX THIS SOMEWAY!!!
#clusterExport(cl,list("lo5"), envir=environment())
#lambdamat <- t(pbapply(X = data[, c("entrytime", "otime")], MARGIN = 1, FUN = Lambdafun, times = ctimes, cbaseh = cbaseh, cl = cl))
#Determine times from which to construct the CGR
helperstimes <- sort(unique(data$entrytime))
#Determine failure times, as we only have to use helperstimes with failure times
#smaller than the construction time.
#THIS DOESNT WORK YET WHEN YOU HAVE INSTANT FAILURES
#BECAUSE THEN YOU CANT DETERMINE THETA - INSTANT FAILURE -> theta = Inf, so
#you ignore instant failure and instead look at previous closest failure time
#But if you use helperfailtimes, you don't look back and instead you get
#a 0 value (see dat2 test in LROIpkgtest)
#helperfailtimes <- numeric(length(helperstimes))
#for(i in seq_along(helperstimes)){
# helperfailtimes[i] <- min(subset(data, entrytime == helperstimes[i])$otime)
#}
#Function used for maximizing over starting points (patients with starting time >= k)
maxoverk <- function(helperstime, ctime, ctimes, data, lambdamat){
matsub <- which(data$entrytime >= helperstime & data$entrytime <= ctime)
#print(lambdamat[, which(ctimes == ctime)])
AT <- sum(lambdamat[matsub, which(ctimes == ctime)])
#THIS COULD BE SLOW, OTHERWISE ASSIGN TDAT <- subset(data, matsub)
NDT <- length(which(data[matsub, ]$censorid == 1 & data[matsub,]$otime <= ctime))
thetat <- log(NDT/AT)
if (is.finite(thetat)){
thetat <- max(0,thetat)
} else {thetat <- 0}
#Determine value of CGI-CUSUM using only patients with S_i > helperstimes[i]
CGIvalue <- thetat* NDT - (exp(thetat)- 1) * AT
return(c(CGIvalue, thetat))
}
#Function to calculate maximum value at one ctime
maxoverj <- function(y){
#For when I fix helperfailtimes problem.
#a <- sapply(helperstimes[which(helperstimes <= y & helperfailtimes <= y)], function(x) maxoverk(helperstime = x, ctime = y, ctimes = ctimes, data = data, lambdamat = lambdamat))
a <- sapply(helperstimes[which(helperstimes <= y)], function(x) maxoverk(helperstime = x, ctime = y, ctimes = ctimes, data = data, lambdamat = lambdamat))
if(length(a) == 0){
return(c(0,0,1))
}else{
tidmax <- which.max(a[1,])
atemp <- a[,tidmax]
return(c(atemp, tidmax))
}
}
#Calculate maxoverk for every construction time ctimes
#If progress bar, then pbsapply (with possible multi-core)
if(displaypb){
message("Step 2/2: Determining chart values.")
}
fin <- pbsapply(ctimes, maxoverj, cl = cl)
if(ncores > 1){
stopCluster(cl)
}
Gt <- as.data.frame(t(fin))
Gt[,2] <- exp(Gt[,2])
Gt[,3] <- helperstimes[Gt[,3]]
Gt <- cbind(ctimes, Gt)
colnames(Gt) <- c("time", "value", "exp_theta_t", "S_nu")
#return list of relevant values
return(Gt)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.