## functions to calculate Mann-Kendall and Sen-Theil slopes
## Uncertainty in slopes are calculated using bootstrap methods
## The block bootstrap used should be regarded as an ongoing development
## see http://www-rcf.usc.edu/~rwilcox/
##
## Author: David Carslaw with Sen-Theil functions from Rand Wilcox
###############################################################################
#' Tests for trends using Theil-Sen estimates
#'
#' Theil-Sen slope estimates and tests for trend.
#'
#' The `TheilSen` function provides a collection of functions to
#' analyse trends in air pollution data. The `TheilSen` function
#' is flexible in the sense that it can be applied to data in many
#' ways e.g. by day of the week, hour of day and wind direction. This
#' flexibility makes it much easier to draw inferences from data
#' e.g. why is there a strong downward trend in concentration from
#' one wind sector and not another, or why trends on one day of the
#' week or a certain time of day are unexpected.
#'
#' For data that are strongly seasonal, perhaps from a background
#' site, or a pollutant such as ozone, it will be important to
#' deseasonalise the data (using the option `deseason =
#' TRUE`.Similarly, for data that increase, then decrease, or show
#' sharp changes it may be better to use [smoothTrend()].
#'
#' A minimum of 6 points are required for trend estimates to be made.
#'
#' Note! that since version 0.5-11 openair uses Theil-Sen to derive
#' the p values also for the slope. This is to ensure there is
#' consistency between the calculated p value and other trend
#' parameters i.e. slope estimates and uncertainties. The p value and
#' all uncertainties are calculated through bootstrap simulations.
#'
#' Note that the symbols shown next to each trend estimate relate to
#' how statistically significant the trend estimate is: p $<$ 0.001 =
#' ***, p $<$ 0.01 = **, p $<$ 0.05 = * and p $<$ 0.1 = $+$.
#'
#' Some of the code used in `TheilSen` is based on that from
#' Rand Wilcox. This mostly
#' relates to the Theil-Sen slope estimates and uncertainties.
#' Further modifications have been made to take account of correlated
#' data based on Kunsch (1989). The basic function has been adapted
#' to take account of auto-correlated data using block bootstrap
#' simulations if `autocor = TRUE` (Kunsch, 1989). We follow the
#' suggestion of Kunsch (1989) of setting the block length to n(1/3)
#' where n is the length of the time series.
#'
#' The slope estimate and confidence intervals in the slope are plotted and
#' numerical information presented.
#'
#' @aliases TheilSen
#' @param mydata A data frame containing the field `date` and at least one
#' other parameter for which a trend test is required; typically (but not
#' necessarily) a pollutant.
#' @param pollutant The parameter for which a trend test is required.
#' Mandatory.
#' @param deseason Should the data be de-deasonalized first? If `TRUE` the
#' function `stl` is used (seasonal trend decomposition using loess).
#' Note that if `TRUE` missing data are first imputed using a
#' Kalman filter and Kalman smooth.
#' @param type `type` determines how the data are split i.e. conditioned,
#' and then plotted. The default is will produce a single plot using the
#' entire data. Type can be one of the built-in types as detailed in
#' `cutData` e.g. \dQuote{season}, \dQuote{year}, \dQuote{weekday} and
#' so on. For example, `type = "season"` will produce four plots --- one
#' for each season.
#'
#' It is also possible to choose `type` as another variable in the data
#' frame. If that variable is numeric, then the data will be split into four
#' quantiles (if possible) and labelled accordingly. If type is an existing
#' character or factor variable, then those categories/levels will be used
#' directly. This offers great flexibility for understanding the variation of
#' different variables and how they depend on one another.
#'
#' Type can be up length two e.g. `type = c("season", "weekday")` will
#' produce a 2x2 plot split by season and day of the week. Note, when two
#' types are provided the first forms the columns and the second the rows.
#' @param avg.time Can be \dQuote{month} (the default), \dQuote{season} or
#' \dQuote{year}. Determines the time over which data should be averaged.
#' Note that for \dQuote{year}, six or more years are required. For
#' \dQuote{season} the data are split up into spring: March, April, May etc.
#' Note that December is considered as belonging to winter of the following
#' year.
#' @param statistic Statistic used for calculating monthly values. Default is
#' \dQuote{mean}, but can also be \dQuote{percentile}. See `timeAverage`
#' for more details.
#' @param percentile Single percentile value to use if `statistic =
#' "percentile"` is chosen.
#' @param data.thresh The data capture threshold to use (%) when aggregating
#' the data using `avg.time`. A value of zero means that all available
#' data will be used in a particular period regardless if of the number of
#' values available. Conversely, a value of 100 will mean that all data will
#' need to be present for the average to be calculated, else it is recorded
#' as `NA`.
#' @param alpha For the confidence interval calculations of the slope. The
#' default is 0.05. To show 99\% confidence intervals for the value of the
#' trend, choose alpha = 0.01 etc.
#' @param dec.place The number of decimal places to display the trend estimate
#' at. The default is 2.
#' @param xlab x-axis label, by default `"year"`.
#' @param lab.frac Fraction along the y-axis that the trend information should
#' be printed at, default 0.99.
#' @param lab.cex Size of text for trend information.
#' @param x.relation This determines how the x-axis scale is plotted.
#' \dQuote{same} ensures all panels use the same scale and \dQuote{free} will
#' use panel-specific scales. The latter is a useful setting when plotting
#' data with very different values.
#' @param y.relation This determines how the y-axis scale is plotted.
#' \dQuote{same} ensures all panels use the same scale and \dQuote{free} will
#' use panel-specific scales. The latter is a useful setting when plotting
#' data with very different values.
#' @param data.col Colour name for the data
#' @param trend list containing information on the line width, line type and
#' line colour for the main trend line and confidence intervals respectively.
#' @param text.col Colour name for the slope/uncertainty numeric estimates
#' @param slope.text The text shown for the slope (default is
#' \sQuote{units/year}).
#' @param cols Predefined colour scheme, currently only enabled for
#' `"greyscale"`.
#' @param shade The colour used for marking alternate years. Use \dQuote{white}
#' or \dQuote{transparent} to remove shading.
#' @param auto.text Either `TRUE` (default) or `FALSE`. If
#' `TRUE` titles and axis labels will automatically try and format
#' pollutant names and units properly e.g. by subscripting the \sQuote{2} in
#' NO2.
#' @param autocor Should autocorrelation be considered in the trend uncertainty
#' estimates? The default is `FALSE`. Generally, accounting for
#' autocorrelation increases the uncertainty of the trend estimate ---
#' sometimes by a large amount.
#' @param slope.percent Should the slope and the slope uncertainties be
#' expressed as a percentage change per year? The default is `FALSE` and
#' the slope is expressed as an average units/year change e.g. ppb.
#' Percentage changes can often be confusing and should be clearly defined.
#' Here the percentage change is expressed as 100 * (C.end/C.start - 1) /
#' (end.year - start.year). Where C.start is the concentration at the start
#' date and C.end is the concentration at the end date.
#'
#' For `avg.time = "year"` (end.year - start.year) will be the total
#' number of years - 1. For example, given a concentration in year 1 of 100
#' units and a percentage reduction of 5%/yr, after 5 years there will be 75
#' units but the actual time span will be 6 years i.e. year 1 is used as a
#' reference year. Things are slightly different for monthly values e.g.
#' `avg.time = "month"`, which will use the total number of months as a
#' basis of the time span and is therefore able to deal with partial years.
#' There can be slight differences in the %/yr trend estimate therefore,
#' depending on whether monthly or annual values are considered.
#' @param date.breaks Number of major x-axis intervals to use. The function
#' will try and choose a sensible number of dates/times as well as formatting
#' the date/time appropriately to the range being considered. This does not
#' always work as desired automatically. The user can therefore increase or
#' decrease the number of intervals by adjusting the value of
#' `date.breaks` up or down.
#' @param date.format This option controls the date format on the
#' x-axis. While `TheilSen` generally sets the date format
#' sensibly there can be some situations where the user wishes to
#' have more control. For format types see `strptime`. For
#' example, to format the date like \dQuote{Jan-2012} set
#' `date.format = "\%b-\%Y"`.
#' @param plot Should a plot be produced? `FALSE` can be useful when
#' analysing data to extract trend components and plotting them in other
#' ways.
#' @param silent When `FALSE` the function will give updates on
#' trend-fitting progress.
#' @param ... Other graphical parameters passed onto `cutData` and
#' `lattice:xyplot`. For example, `TheilSen` passes the option
#' `hemisphere = "southern"` on to `cutData` to provide southern
#' (rather than default northern) hemisphere handling of `type =
#' "season"`. Similarly, common axis and title labelling options (such as
#' `xlab`, `ylab`, `main`) are passed to `xyplot` via
#' `quickText` to handle routine formatting.
#' @export TheilSen
#' @return an [openair][openair-package] object. The `data` component of the
#' `TheilSen` output includes two subsets: `main.data`, the monthly
#' data `res2` the trend statistics. For `output <- TheilSen(mydata,
#' "nox")`, these can be extracted as `object$data$main.data` and
#' `object$data$res2`, respectively. Note: In the case of the intercept,
#' it is assumed the y-axis crosses the x-axis on 1/1/1970.
#' @author David Carslaw with some trend code from Rand Wilcox
#' @family time series and trend functions
#' @references
#'
#' Helsel, D., Hirsch, R., 2002. Statistical methods in water resources. US
#' Geological Survey. Note that
#' this is a very good resource for statistics as applied to environmental
#' data.
#'
#' Hirsch, R. M., Slack, J. R., Smith, R. A., 1982. Techniques of trend
#' analysis for monthly water-quality data. Water Resources Research 18 (1),
#' 107-121.
#'
#' Kunsch, H. R., 1989. The jackknife and the bootstrap for general stationary
#' observations. Annals of Statistics 17 (3), 1217-1241.
#'
#' Sen, P. K., 1968. Estimates of regression coefficient based on
#' Kendall's tau. Journal of the American Statistical Association
#' 63(324).
#'
#' Theil, H., 1950. A rank invariant method of linear and polynomial
#' regression analysis, i, ii, iii. Proceedings of the Koninklijke
#' Nederlandse Akademie Wetenschappen, Series A - Mathematical
#' Sciences 53, 386-392, 521-525, 1397-1412.
#'
#' \dots{} see also several of the Air Quality Expert Group (AQEG) reports for
#' the use of similar tests applied to UK/European air quality data.
#' @examples
#' # trend plot for nox
#' TheilSen(mydata, pollutant = "nox")
#'
#' # trend plot for ozone with p=0.01 i.e. uncertainty in slope shown at
#' # 99 % confidence interval
#'
#' \dontrun{
#' TheilSen(mydata, pollutant = "o3", ylab = "o3 (ppb)", alpha = 0.01)
#' }
#'
#' # trend plot by each of 8 wind sectors
#' \dontrun{
#' TheilSen(mydata, pollutant = "o3", type = "wd", ylab = "o3 (ppb)")
#' }
#'
#' # and for a subset of data (from year 2000 onwards)
#' \dontrun{
#' TheilSen(selectByDate(mydata, year = 2000:2005), pollutant = "o3", ylab = "o3 (ppb)")
#' }
TheilSen <- function(
mydata,
pollutant = "nox",
deseason = FALSE,
type = "default",
avg.time = "month",
statistic = "mean",
percentile = NA,
data.thresh = 0,
alpha = 0.05,
dec.place = 2,
xlab = "year",
lab.frac = 0.99,
lab.cex = 0.8,
x.relation = "same",
y.relation = "same",
data.col = "cornflowerblue",
trend = list(lty = c(1, 5), lwd = c(2, 1), col = c("red", "red")),
text.col = "darkgreen",
slope.text = NULL,
cols = NULL,
shade = "grey95",
auto.text = TRUE,
autocor = FALSE,
slope.percent = FALSE,
date.breaks = 7,
date.format = NULL,
plot = TRUE,
silent = FALSE,
...
) {
## get rid of R check annoyances
a <- b <- lower.a <- lower.b <- upper.a <- upper.b <- slope.start <- date.end <- intercept.start <- date.start <- lower.start <- intercept.lower.start <- upper.start <- intercept.upper.start <- NULL
## set graphics
current.strip <- trellis.par.get("strip.background")
current.font <- trellis.par.get("fontsize")
## reset graphic parameters
on.exit(trellis.par.set(
fontsize = current.font
))
## greyscale handling
if (length(cols) == 1 && cols == "greyscale") {
trellis.par.set(list(strip.background = list(col = "white")))
## other local colours
trend$col <- c("black", "black")
data.col <- "darkgrey"
text.col <- "black"
} else {
data.col <- data.col
text.col <- text.col
}
## extra.args setup
extra.args <- list(...)
## label controls
## (xlab currently handled in plot because unqiue action)
extra.args$ylab <- if ("ylab" %in% names(extra.args)) {
quickText(extra.args$ylab, auto.text)
} else {
quickText(pollutant, auto.text)
}
extra.args$main <- if ("main" %in% names(extra.args)) {
quickText(extra.args$main, auto.text)
} else {
quickText("", auto.text)
}
if ("fontsize" %in% names(extra.args)) {
trellis.par.set(fontsize = list(text = extra.args$fontsize))
}
xlim <- if ("xlim" %in% names(extra.args)) {
extra.args$xlim
} else {
NULL
}
## layout default
if (!"layout" %in% names(extra.args)) {
extra.args$layout <- NULL
}
vars <- c("date", pollutant)
if (!avg.time %in% c("year", "month", "season")) {
stop("avg.time can only be 'month', 'season' or 'year'.")
}
## find time interval
# need this because if user has a data capture threshold, need to know
# original time interval
# Working this out for unique dates for all data is what is done here.
# More reliable than trying to work it out after conditioning where there
# may be too few data for the calculation to be reliable
interval <- find.time.interval(mydata$date)
## equivalent number of days, used to refine interval for month/year
days <- as.numeric(strsplit(interval, split = " ")[[1]][1]) /
24 /
3600
## better interval, most common interval in a year
if (days == 31) interval <- "month"
if (days %in% c(365, 366)) interval <- "year"
## data checks
mydata <- checkPrep(mydata, vars, type, remove.calm = FALSE)
## date formatting for plot
date.at <- as_date(dateBreaks(mydata$date, date.breaks)$major)
## date axis formating
if (is.null(date.format)) {
formats <- dateBreaks(mydata$date, date.breaks)$format
} else {
formats <- date.format
}
## cutData depending on type
mydata <- cutData(mydata, type, ...)
## for overall data and graph plotting
start.year <- startYear(mydata$date)
end.year <- endYear(mydata$date)
start.month <- startMonth(mydata$date)
end.month <- endMonth(mydata$date)
mydata <- suppressWarnings(
timeAverage(
mydata,
type = type,
avg.time = avg.time,
statistic = statistic,
percentile = percentile,
data.thresh = data.thresh,
interval = interval,
progress = !silent
)
)
# timeAverage drops type if default
if ("default" %in% type) mydata$default <- "default"
process.cond <- function(mydata) {
if (all(is.na(mydata[[pollutant]]))) {
return(data.frame(
b = NA,
a = NA,
lower.a = NA,
upper.a = NA,
lower.b = NA,
upper.b = NA,
p.stars = NA
))
}
## sometimes data have long trailing NAs, so start and end at
## first and last data
min.idx <- min(which(!is.na(mydata[, pollutant])))
max.idx <- max(which(!is.na(mydata[, pollutant])))
mydata <- mydata[min.idx:max.idx, ]
## these subsets may have different dates to overall
start.year <- startYear(mydata$date)
end.year <- endYear(mydata$date)
start.month <- startMonth(mydata$date)
end.month <- endMonth(mydata$date)
if (avg.time == "month") {
mydata$date <- as_date(mydata$date)
deseas <- mydata[[pollutant]]
## can't deseason less than 2 years of data
if (nrow(mydata) <= 24) deseason <- FALSE
if (deseason) {
myts <- ts(
mydata[[pollutant]],
start = c(start.year, start.month),
end = c(end.year, end.month),
frequency = 12
)
# fill any missing data using a Kalman filter
if (any(is.na(myts))) {
fit <- ts(rowSums(tsSmooth(StructTS(myts))[, -2]))
id <- which(is.na(myts))
myts[id] <- fit[id]
}
## key thing is to allow the seanonal cycle to vary, hence
## s.window should not be "periodic"; set quite high to avoid
## overly fitted seasonal cycle
## robustness also makes sense for sometimes noisy data
ssd <- stl(myts, s.window = 11, robust = TRUE, s.degree = 1)
deseas <- ssd$time.series[, "trend"] + ssd$time.series[, "remainder"]
deseas <- as.vector(deseas)
}
all.results <- data.frame(
date = mydata$date,
conc = deseas,
stringsAsFactors = FALSE
)
results <- na.omit(all.results)
} else {
## assume annual
all.results <- data.frame(
date = as_date(mydata$date),
conc = mydata[[pollutant]],
stringsAsFactors = FALSE
)
results <- na.omit(all.results)
}
## now calculate trend, uncertainties etc ###########################
if (nrow(results) < 6) {
## need enough data to calculate trend, set missing if not
results <- mutate(
results,
b = NA,
a = NA,
lower.a = NA,
upper.a = NA,
lower.b = NA,
upper.b = NA,
p.stars = NA
)
return(results)
}
MKresults <- MKstats(
results$date,
results$conc,
alpha,
autocor,
silent = silent
)
## make sure missing data are put back in for plotting
results <- merge(all.results, MKresults, by = "date", all = TRUE)
results
}
# need to work out how to use dplyr if it does not return a data frame due to too few data
if (!silent) {
message("Taking bootstrap samples. Please wait.", appendLF = TRUE)
}
split.data <- mydata %>%
group_by(across(type)) %>%
nest() %>%
mutate(
data = purrr::map(
data,
process.cond,
.progress = "Taking Bootstrap Samples"
)
) %>%
unnest(cols = c(data))
if (nrow(split.data) < 2) {
return()
}
## special wd layout
# (type field in results.grid called type not wd)
if (
length(type) == 1 &
type[1] == "wd" &
is.null(extra.args$layout)
) {
## re-order to make sensible layout
## starting point code as of ManKendall
wds <- c("NW", "N", "NE", "W", "E", "SW", "S", "SE")
split.data$wd <- ordered(split.data$wd, levels = wds)
wd.ok <-
sapply(wds, function(x) {
if (x %in% unique(split.data$wd)) {
FALSE
} else {
TRUE
}
})
skip <- c(wd.ok[1:4], TRUE, wd.ok[5:8])
split.data$wd <- factor(split.data$wd)
extra.args$layout <- c(3, 3)
if (!"skip" %in% names(extra.args)) {
extra.args$skip <- skip
}
}
if (!"skip" %in% names(extra.args)) {
extra.args$skip <- FALSE
}
## proper names of labelling #######################################
strip.dat <- strip.fun(split.data, type, auto.text)
strip <- strip.dat[[1]]
strip.left <- strip.dat[[2]]
pol.name <- strip.dat[[3]]
#### calculate slopes etc ###########################################
split.data <- transform(
split.data,
slope = 365 * b,
intercept = a,
intercept.lower = lower.a,
intercept.upper = upper.a,
lower = 365 * lower.b,
upper = 365 * upper.b
)
## aggregated results
vars <- c(type, "p.stars")
res2 <- split.data %>%
group_by(across(vars)) %>%
summarise(across(everything(), ~ mean(.x, na.rm = TRUE)))
## calculate percentage changes in slope and uncertainties need
## start and end dates (in days) to work out concentrations at those
## points percentage change defind as 100.(C.end/C.start -1) /
## duration
start <- split.data %>%
group_by(across(type)) %>%
dplyr::slice_head(n = 1)
end <- split.data %>%
group_by(across(type)) %>%
dplyr::slice_tail(n = 1)
percent.change <- merge(start, end, by = type, suffixes = c(".start", ".end"))
percent.change <-
transform(
percent.change,
slope.percent = 100 *
365 *
((slope.start * as.numeric(date.end) / 365 + intercept.start) /
(slope.start * as.numeric(date.start) / 365 + intercept.start) -
1) /
(as.numeric(date.end) - as.numeric(date.start))
)
## got upper/lower intercepts mixed up To FIX?
percent.change <-
transform(
percent.change,
lower.percent = 100 *
365 *
((lower.start * as.numeric(date.end) / 365 + intercept.lower.start) /
(lower.start * as.numeric(date.start) / 365 + intercept.lower.start) -
1) /
(as.numeric(date.end) - as.numeric(date.start))
)
percent.change <-
transform(
percent.change,
upper.percent = 100 *
365 *
((upper.start * as.numeric(date.end) / 365 + intercept.upper.start) /
(upper.start * as.numeric(date.start) / 365 + intercept.upper.start) -
1) /
(as.numeric(date.end) - as.numeric(date.start))
)
percent.change <- percent.change[, c(
type,
"slope.percent",
"lower.percent",
"upper.percent"
)]
split.data <- merge(split.data, percent.change, by = type)
res2 <- merge(res2, percent.change, by = type)
## #################################################################
temp <- paste(type, collapse = "+")
myform <- formula(paste("conc ~ date| ", temp, sep = ""))
gap <- (max(split.data$date) - min(split.data$date)) / 80
if (is.null(xlim)) xlim <- range(split.data$date) + c(-1 * gap, gap)
xyplot.args <- list(
x = myform,
data = split.data,
xlab = quickText(xlab, auto.text),
par.strip.text = list(cex = 0.8),
as.table = TRUE,
xlim = xlim,
strip = strip,
strip.left = strip.left,
scales = list(
x = list(
at = date.at,
format = date.format,
relation = x.relation
),
y = list(relation = y.relation, rot = 0)
),
panel = function(x, y, subscripts, ...) {
## year shading
panel.shade(
split.data,
start.year,
end.year,
ylim = current.panel.limits()$ylim,
shade
)
panel.grid(-1, 0)
panel.xyplot(x, y, type = "b", col = data.col, ...)
# sub.dat <- na.omit(split.data[subscripts, ])
sub.dat <- split.data[subscripts, ]
# need some data to plot, check if enough information to show trend
if (nrow(sub.dat) > 0 && !all(is.na(sub.dat$slope))) {
panel.abline(
a = sub.dat[1, "intercept"],
b = sub.dat[1, "slope"] / 365,
col = trend$col[1],
lwd = trend$lwd[1],
lty = trend$lty[1]
)
panel.abline(
a = sub.dat[1, "intercept.lower"],
b = sub.dat[1, "lower"] / 365,
col = trend$col[2],
lwd = trend$lwd[2],
lty = trend$lty[2]
)
panel.abline(
a = sub.dat[1, "intercept.upper"],
b = sub.dat[1, "upper"] / 365,
col = trend$col[2],
lwd = trend$lwd[2],
lty = trend$lty[2]
)
## for text on plot - % trend or not?
slope <- "slope"
lower <- "lower"
upper <- "upper"
units <- "units"
if (slope.percent) {
slope <- "slope.percent"
lower <- "lower.percent"
upper <- "upper.percent"
units <- "%"
}
## allow user defined slope text
if (!is.null(slope.text)) {
slope.text <- slope.text
} else {
slope.text <- paste0(units, "/year")
}
## plot top, middle
panel.text(
mean(c(
current.panel.limits()$xlim[2],
current.panel.limits()$xlim[1]
)),
current.panel.limits()$ylim[1] +
lab.frac *
(current.panel.limits()$ylim[2] -
current.panel.limits()$ylim[1]),
paste(
round(sub.dat[1, slope], dec.place),
" ",
"[",
round(sub.dat[1, lower], dec.place),
", ",
round(sub.dat[1, upper], dec.place),
"] ",
slope.text,
" ",
sub.dat[1, "p.stars"],
sep = ""
),
cex = lab.cex,
adj = c(0.5, 1),
col = text.col,
font = 2
)
}
}
)
# reset for extra.args
xyplot.args <- listUpdate(xyplot.args, extra.args)
# plot
plt <- do.call(xyplot, xyplot.args)
## output ##########################################################
if (plot) {
if (length(type) == 1) {
plot(plt)
} else {
plot(useOuterStrips(plt, strip = strip, strip.left = strip.left))
}
}
newdata <- list(
main.data = dplyr::tibble(split.data),
res2 = dplyr::tibble(res2),
subsets = c("main.data", "res2")
)
output <- list(
plot = plt,
data = newdata,
call = match.call()
)
class(output) <- "openair"
invisible(output)
}
panel.shade <- function(
split.data,
start.year,
end.year,
ylim,
shade = "grey95"
) {
x1 <- as.POSIXct(
seq(
ISOdate(start.year - 6, 1, 1),
ISOdate(end.year + 5, 1, 1),
by = "2 years"
),
"GMT"
)
x2 <- as.POSIXct(
seq(
ISOdate(start.year + 1 - 6, 1, 1),
ISOdate(end.year + 5, 1, 1),
by = "2 years"
),
"GMT"
)
if (class(split.data$date)[1] == "Date") {
x1 <- as_date(x1)
x2 <- as_date(x2)
}
rng <- range(split.data$conc, na.rm = TRUE) ## range of data
y1 <- min(split.data$conc, na.rm = TRUE) - 0.1 * abs(rng[2] - rng[1])
y2 <- max(split.data$conc, na.rm = TRUE) + 0.1 * abs(rng[2] - rng[1])
## if user selects specific limits
if (!missing(ylim)) {
y1 <- ylim[1] - 0.1 * abs(ylim[2] - ylim[1])
y2 <- ylim[2] + 0.1 * abs(ylim[2] - ylim[1])
}
sapply(seq_along(x1), function(x) {
lpolygon(
c(x1[x], x1[x], x2[x], x2[x]),
c(y1, y2, y2, y1),
col = shade,
border = "grey95"
)
})
}
MKstats <- function(x, y, alpha, autocor, silent) {
estimates <- regci(
as.numeric(x),
y,
alpha = alpha,
autocor = autocor,
pr = silent
)$regci
p <- estimates[2, 5]
if (p >= 0.1) stars <- ""
if (p < 0.1 & p >= 0.05) stars <- "+"
if (p < 0.05 & p >= 0.01) stars <- "*"
if (p < 0.01 & p >= 0.001) stars <- "**"
if (p < 0.001) stars <- "***"
results <-
data.frame(
date = x,
a = estimates[1, 3],
b = estimates[2, 3],
upper.a = estimates[1, 1],
upper.b = estimates[2, 2],
lower.a = estimates[1, 2],
lower.b = estimates[2, 1],
p = p,
p.stars = stars,
stringsAsFactors = FALSE
)
results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.