| binaryPRC | R Documentation | 
Precision-recall curve for binary label prediction
binaryPRC( scores, labels, cutoff = NULL, cut_direction = ">=", add_cut1 = FALSE, empty_precision = 1 )
| scores | Prediction score for each sample | 
| labels | True labels for each sample, e.g., from simulation | 
| cutoff | A vector of cutoffs; if NULL use all unique scores | 
| cut_direction | A string to compare with cutoff: >=, >, <=, < | 
| add_cut1 | Logical value; if True, manually add a cutoff of 1 | 
| empty_precision | Float value for default precision if no any recall | 
A data.frame containing recall and precision values at various cutoffs.
scores <- 1:10 labels <- c(0, 0, 0, 1, 0, 1, 0, 1, 1, 1) binaryPRC(scores, labels) # Extra arguments. binaryPRC(scores, labels, cutoff = seq(1, 10, by = 2)) binaryPRC(scores, labels, cut_direction = ">") binaryPRC(scores, labels, add_cut1 = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.