#' Time Varying Mediation Function: Continuous Outcome and Two Treatment Groups
#'
#' Function to estimate the time-varying mediation effect and bootstrap standard
#' errors for two treatment groups and a continuous outcome.
#'
#' @param treatment a vector indicating treatment group
#' @param t.seq a vector of time points for each observation
#' @param mediator matrix of mediator values in wide format
#' @param outcome matrix of outcome values in wide format
#' @param t.est a vector of time points at which to estimate.
#' Default = t.seq (OPTIONAL ARGUMENT)
#' @param plot TRUE or FALSE for producing plots. Default = "FALSE"
#' (OPTIONAL ARGUMENT)
#' @param CI "none" or "boot" method of deriving confidence intervals.
#' Default = "boot" (OPTIONAL ARGUMENT)
#' @param replicates number of replicates for bootstrapping confidence intervals.
#' Default = 1000 (OPTIONAL ARGUMENT)
#' @param verbose TRUE or FALSE for printing results to screen.
#' Default = "FALSE" (OPTIONAL ARGUMENT)
#'
#' @return \item{hat.alpha}{estimated time-varying treatment effect on mediator}
#' @return \item{CI.lower.alpha}{CI lower limit for estimated coefficient hat.alpha}
#' @return \item{CI.upper.alpha}{CI upper limit for estimated coefficient hat.alpha}
#' @return \item{hat.gamma}{estimated time-varying treatment effect on outcome (direct effect)}
#' @return \item{CI.lower.gamma}{CI lower limit for estimated coefficient hat.gamma}
#' @return \item{CI.upper.gamma}{CI upper limit for estimated coefficient hat.gamma}
#' @return \item{hat.beta}{estimated time-varying effect of the mediator on outcome}
#' @return \item{CI.lower.beta}{CI lower limit for estimated coefficient hat.beta}
#' @return \item{CI.upper.beta}{CI upper limit for estimated coefficient hat.beta}
#' @return \item{hat.tau}{estimated time-varying treatment effect on outcome (total effect)}
#' @return \item{CI.lower.tau}{CI lower limit for estimated coefficient hat.tau}
#' @return \item{CI.upper.tau}{CI upper limit for estimated coefficient hat.tau}
#' @return \item{est.M}{time varying mediation effect}
#' @return \item{boot.se.m}{estimated standard error for est.M}
#' @return \item{CI.lower}{CI lower limit for est.M}
#' @return \item{CI.upper}{CI upper limit for est.M}
#'
#' @section Plot Returns:
#' \enumerate{
#' \item{\code{Alpha_CI }}{plot for hat.alpha with CIs over t.est}
#' \item{\code{Gamma_CI }}{plot for hat.gamma with CIs over t.est}
#' \item{\code{Beta_CI }}{plot for hat.beta with CIs over t.est}
#' \item{\code{Tau_CI }}{plot for hat.tau with CIs over t.est}
#' \item{\code{MedEff }}{plot for est.M over t.est}
#' \item{\code{MedEff_CI }}{plot for est.M with CIs over t.est}
#' }
#'
#' @note
#' \enumerate{
#' \item{** IMPORTANT ** An alternate way of formatting the data and calling the
#' function is documented in detail in the tutorial for the tvmb() function.}
#' }
#'
#' @examples
#' \dontrun{data(smoker)
#'
#' # REDUCE DATA SET TO ONLY 2 TREATMENT CONDITIONS (EXCLUDING COMBINATION NRT)
#' smoker.sub <- smoker[smoker$treatment != 4, ]
#'
#' # GENERATE WIDE FORMATTED MEDIATORS
#' mediator <- LongToWide(smoker.sub$SubjectID,
#' smoker.sub$timeseq,
#' smoker.sub$NegMoodLst15min)
#'
#' # GENERATE WIDE FORMATTED OUTCOMES
#' outcome <- LongToWide(smoker.sub$SubjectID,
#' smoker.sub$timeseq,
#' smoker.sub$cessFatig)
#'
#' # GENERATE A BINARY TREATMENT VARIABLE
#' trt <- as.numeric(unique(smoker.sub[,c("SubjectID","varenicline")])[,2])-1
#'
#' # GENERATE A VECTOR OF UNIQUE TIME POINTS
#' t.seq <- sort(unique(smoker.sub$timeseq))
#'
#' # COMPUTE TIME VARYING MEDIATION ANALYSIS USING BOOTSTRAPPED CONFIDENCE INTERVALS
#' results <- tvma(trt, t.seq, mediator, outcome)
#'
#' # COMPUTE TIME VARYING MEDIATION ANALYSIS FOR SPECIFIED POINTS IN TIME USING 250 REPLICATES
#' results <- tvma(trt, t.seq, mediator, outcome,
#' t.est = c(0.2, 0.4, 0.6, 0.8),
#' replicates = 250)}
#' @references
#' \enumerate{
#' \item{Fan, J. and Gijbels, I. Local polynomial modelling and its
#' applications: Monographs on statistics and applied probability 66.
#' CRC Press; 1996.}
#' \item{Fan J, Zhang W. Statistical Estimation in Varying Coefficient Models.
#' The Annals of Statistics. 1999;27(5):1491-1518.}
#' \item{Fan J, Zhang JT. Two-step estimation of functional linear models with
#' applications to longitudinal data. Journal of the Royal Statistical Society:
#' Series B (Statistical Methodology). 2000;62(2):303-322.}
#' \item{Cai X, Coffman DL, Piper ME, Li R. Estimation and inference for the mediation
#' effect in a time-varying mediation model. BMC Med Res Methodol.
#' 2022;22(1):1-12.}
#' \item{Baker TB, Piper ME, Stein JH, et al. Effects of Nicotine Patch vs Varenicline
#' vs Combination Nicotine Replacement Therapy on Smoking Cessation at 26 Weeks:
#' A Randomized Clinical Trial. JAMA. 2016;315(4):371.}
#' \item{B. Efron, R. Tibshirani. Bootstrap Methods for Standard Errors, Confidence
#' Intervals, and Other Measures of Statistical Accuracy. Statistical Science.
#' 1986;1(1):54-75.}
#' }
#'
#' @export
#' @importFrom stats complete.cases cov glm lm loess na.omit predict quantile sd var
#' @import dplyr
#' @import ggplot2
#' @import locpol
tvma <- function(treatment, t.seq, mediator, outcome, t.est = t.seq, plot = FALSE, CI="boot", replicates = 1000, verbose = FALSE)
{
## Testing the class of the arguments passed in the function
ctm <- class(mediator)
cto <- class(outcome)
ctt <- class(treatment)
cts <- class(t.seq)
flag <- 0
if(ctm[1] != "matrix"){
print("Error: `mediator` is not of class type `matrix`.")
flag <- flag + 1
}
if(cto[1] != "matrix"){
print("Error: `outcome` is not of class type `matrix`.")
flag <- flag + 1
}
if(is.vector(treatment) != TRUE || ctt != "numeric"){
print("Error: `treatment` is not of class type `numeric vector`.")
flag <- flag + 1
}
if(is.vector(t.seq) != TRUE || cts != "numeric"){
print("Error: `t.seq` is not of class type `numeric vector`.")
flag <- flag + 1
}
if(flag == 0){
if(CI == "boot" || CI == "none"){
index <- vector()
index <- which(!is.na(treatment))
treatment <- treatment[index]
outcome <- outcome[,index]
mediator <- mediator[,index]
deltat <- max(diff(t.seq))/2 # half the time between two measures
N <- length(treatment)
t.coeff <- NULL
for (j in 2:length(t.seq)){
# create empty vector, store mediator
temp.mediator.j <- NULL
temp.mediator.j <- cbind(mediator[j-1, ], mediator[j, ])
# Derive centered Mediators and Outcomes
newMO.j.est <- newMediatorOutcome(treatment, temp.mediator.j, outcome[j-1,])
# Estimate coefficients alpha, beta and gamma
coeff.est <- estCoeff(newMO.j.est)
# Estimate total effect coefficient
X.new <- scale(treatment, center = TRUE, scale = FALSE)
Y.new <- scale(outcome[j-1,], center = TRUE, scale = FALSE)
nomissing.X <- complete.cases(X.new)
nomissing.Y <- complete.cases(Y.new)
nomissing.index <- nomissing.X*nomissing.Y
X.new <- X.new[which(nomissing.index == 1),]
Y.new <- Y.new[which(nomissing.index == 1)]
sym_newMO <- t(X.new)%*%(X.new)
coeff.tau <- solve(sym_newMO)%*%t(X.new)%*%(Y.new)
# Store the coefficients
coeff.all <- rbind(coeff.est, coeff.tau)
t.coeff <- cbind(t.coeff, coeff.all) # store coeff estimates at t.seq
}
est.smooth <- smoothest(t.seq, t.coeff, t.est, deltat)
## CIs for the coefficients alpha and beta
coeff_CI_2trt <- bootci_coeff_2trt(treatment, t.seq, mediator, outcome, t.est, deltat, replicates)
test1 <- cbind(as.data.frame(est.smooth), as.data.frame(coeff_CI_2trt), t.est)
# CONFIDENCE INTERVALS for mediated effect
if(CI == "boot"){
results_ci <- estBootCIs(treatment, t.seq, mediator, outcome, t.est, deltat, replicates)
test2 <- cbind(as.data.frame(results_ci), t.est)
final_dat <- merge(test1, test2, all.x = TRUE)
final_results <- final_dat %>%
select(-bw_alpha, -bw_gamma, -bw_beta, -bw_tau)
final_results <- final_results[c("t.est","hat.alpha","CI.lower.alpha","CI.upper.alpha",
"hat.gamma", "CI.lower.gamma", "CI.upper.gamma",
"hat.beta", "CI.lower.beta", "CI.upper.beta",
"hat.tau", "CI.lower.tau", "CI.upper.tau",
"est.M", "boot.se", "CI.lower", "CI.upper")]
names(final_results)[15] <- c("boot.se.m")
}
else{
final_results <- test1 %>%
select(-bw_alpha1, -bw_beta1, -bw_beta2, -bw_tau)
final_results <- final_results[c("t.est","hat.alpha","CI.lower.alpha","CI.upper.alpha",
"hat.gamma", "CI.lower.gamma", "CI.upper.gamma",
"hat.beta", "CI.lower.beta", "CI.upper.beta",
"hat.tau", "CI.lower.tau", "CI.upper.tau",
"est.M")]
}
#### Plot construction ####
if(plot == TRUE){
lt <- length(final_results$t.est)
l <- min(final_results$t.est)
u <- max(final_results$t.est)
if(u <= 1){
if(lt <= 10){
i <- 0.2
}else if(lt>10 && lt<=20){
i <- 0.15
}else if(lt>20){
i <- 0.25
}
}else if(u>1 && u<=30){
i <- 2
}else if(u>30 && u <=50){
i <- 5
}else if(u>50){
i <- 10
}
# First Plot: alpha coefficients over time
plot1_a <- ggplot(data = final_results, aes(t.est, hat.alpha)) +
geom_line(color = "red", size = 0.75) +
geom_line(aes(t.est, CI.lower.alpha), size = 0.8, color = "blue", linetype = "dashed") +
geom_line(aes(t.est, CI.upper.alpha), size = 0.8, color = "blue", linetype = "dashed") +
labs(title = "Plot of the time-varying treatment effect on the mediator",
x = "Time Sequence",
y = "Alpha coefficient") +
scale_x_continuous(breaks = seq(l, u, i))
# Second plot: gamma coefficient over time
plot2_g <- ggplot(data = final_results, aes(t.est, hat.gamma)) +
geom_line(color = "red", size = 0.75) +
geom_line(aes(t.est, CI.lower.gamma), size = 0.8, color = "blue", linetype = "dashed") +
geom_line(aes(t.est, CI.upper.gamma), size = 0.8, color = "blue", linetype = "dashed") +
labs(title = "Plot of the time-varying direct effect",
x = "Time Sequence",
y = "Gamma coefficient") +
scale_x_continuous(breaks = seq(l, u, i))
# Third plot: beta coefficient over time
plot3_b <- ggplot(data = final_results, aes(t.est, hat.beta)) +
geom_line(color = "red", size = 0.75) +
geom_line(aes(t.est, CI.lower.beta), size = 0.8, color = "blue", linetype = "dashed") +
geom_line(aes(t.est, CI.upper.beta), size = 0.8, color = "blue", linetype = "dashed") +
labs(title = "Plot of the time-varying effect of the mediator on the outcome",
x = "Time Sequence",
y = "Beta coefficient") +
scale_x_continuous(breaks = seq(l, u, i))
# Fourth plot: tau coefficient over time
plot4_t <- ggplot(data = final_results, aes(t.est, hat.tau)) +
geom_line(color = "red", size = 0.75) +
geom_line(aes(t.est, CI.lower.tau), size = 0.8, color = "blue", linetype = "dashed") +
geom_line(aes(t.est, CI.upper.tau), size = 0.8, color = "blue", linetype = "dashed") +
labs(title = "Plot of the time-varying total effect",
x = "Time Sequence",
y = "Tau cofficient") +
scale_x_continuous(breaks = seq(l, u, i))
# Fifth plot: mediation effect over time
plot5 <- ggplot(data = final_results, aes(t.est, est.M)) +
geom_line(color = "red", size = 0.75) +
labs(title = "Plot of the time-varying mediation effect",
x = "Time Sequence",
y = "Mediation effect") +
scale_x_continuous(breaks = seq(l, u, i))
if(CI == "boot"){
# Sixth plot: mediation effect with 95% CIs over time
plot6 <- ggplot(data = final_results, aes(t.est, est.M)) +
geom_line(size = 1, color = "red") +
geom_line(aes(t.est, CI.lower), size = 0.8, color = "blue", linetype = "dashed") +
geom_line(aes(t.est, CI.upper), size = 0.8, color = "blue", linetype = "dashed") +
# geom_line(aes(t.est, 0)) +
labs(title = "Time-varying mediation effect with 95% percentile bootstrap CIs",
x = "Time Sequence",
y = "Mediation effect") +
theme(legend.position = "none") +
scale_x_continuous(breaks = seq(l, u, i))
plot_results <- list("Alpha_CI" = plot1_a,
"Gamma_CI" = plot2_g,
"Beta_CI" = plot3_b,
"Tau_CI" = plot4_t,
"MedEff" = plot5,
"MedEff_CI" = plot6)
}else{
plot_results <- list("Alpha_CI" = plot1_a,
"Gamma_CI" = plot2_g,
"Beta_CI" = plot3_b,
"Tau_CI" = plot4_t,
"MedEff" = plot5)
}
}
## Print results to screen
if(verbose == TRUE){
print("Time Varying Mediation Results:")
if(plot == TRUE){
print(final_results)
print(plot_results)
}else{
print(final_results)
}
}
## Enclosing all the plots in a list object to return
if(plot == TRUE & CI == "boot"){
results <- list("Estimates" = final_results,
"Alpha_CI" = plot1_a,
"Gamma_CI" = plot2_g,
"Beta_CI" = plot3_b,
"Tau_CI" = plot4_t,
"MedEff" = plot5,
"MedEff_CI" = plot6)
}
else if(plot == TRUE & CI != "boot"){
results <- list("Estimates" = final_results,
"Alpha_CI" = plot1_a,
"Gamma_CI" = plot2_g,
"Beta_CI" = plot3_b,
"Tau_CI" = plot4_t,
"MedEff" = plot5)
}
else{
results <- list("Estimates" = final_results)
}
return(results)
}
else{
print(paste("Error: Accepted values for CI are 'boot' and 'none';
you have entered an unacceptable value for CI."))
}
}else{
print(paste("tvma() stopped execution due to unacceptable class type of function argument(s)."))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.