######################################################
######################################################
## One advanced plot layout: corset
######################################################
######################################################
######################################################################################
#' @name superbPlot.corset
#'
#' @title superbPlot 'corset' layout
#'
#' @md
#'
#' @description superbPlot comes with a few built-in templates for making the final plots.
#' The corset plot is specifically devised for 2-repeated-measure design: it merges
#' the "pointindividualline" layout with a raincloud layout \insertCite{kb21}{superb}.
#' All layout produces ggplot objects that can be further customized. Additionally, it is
#' possible to create custom-make templates (see vignette 5). The functions, to be
#' "superbPlot-compatible", must have these parameters:
#'
#' @param summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each level of the factors;
#' @param xfactor a string with the name of the column where the factor going on the horizontal axis is given;
#' @param groupingfactor a string with the name of the column for which the data will be grouped on the plot;
#' @param addfactors a string with up to two additional factors to make the rows and columns panels, in the form "fact1 ~ fact2";
#' @param rawdata always contains "DV" for each participants and each level of the factors;
#' @param lineParams (optional) list of graphic directives that are sent to the geom_line layer;
#' @param pointParams (optional) list of graphic directives that are sent to the geom_bar layer;
#' @param errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar layer;
#' @param jitterParams (optional) list of graphic directives that are sent to the geom_jitter layer;
#' @param violinParams (optional) list of graphic directives that are sent to the geom_boxplot layer;
#' @param facetParams (optional) list of graphic directives that are sent to the facet_grid layer;
#' @param xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous or discrete (default is discrete).
#'
#' @return a ggplot object
#'
#' @references
#' \insertAllCited{}
#'
#' @examples
#' # We first generate randomly a 2-measurement dataset with 50 participants and a large effect
#' dta <- GRD(SubjectsPerGroup = 50, WSFactors = "moment(2)", Effects = list("moment"=slope(3)))
#'
#' # This will make a basic corset plot
#' superb(
#' cbind(DV.1, DV.2) ~ .,
#' dta,
#' WSFactors = "moment(2)",
#' plotStyle = "corset"
#' )
#'
#' # This will color the increasing and decreasing individuals
#' superb(
#' cbind(DV.1, DV.2) ~ .,
#' dta,
#' WSFactors = "moment(2)",
#' plotStyle = "corset",
#' lineParams = list(colorize=TRUE)
#' )
#'
#' # This layout has similarities with the "pointindividualline" layout
#' superb(
#' cbind(DV.1, DV.2) ~ .,
#' dta,
#' WSFactors = "moment(2)",
#' plotStyle = "pointindividualline"
#' )
#'
#' # if you extract the data with superbData, you can
#' # run this layout directly
#' processedData <- superb(
#' cbind(DV.1, DV.2) ~ .,
#' dta,
#' WSFactors = "moment(2)",
#' showPlot = FALSE
#' )
#'
#' superbPlot.corset(processedData$summaryStatistic,
#' "moment", NULL, ".~.",
#' processedData$rawData,
#' lineParams = list(colorize=TRUE) )
#'
#'
#' @export superbPlot.corset
#'
######################################################################################
superbPlot.corset <- function(
summarydata, # a summary result data.frame
xfactor, # the factor on the horizontal axis
groupingfactor, # the factor for multiple lines/bars within the plot
addfactors, # the factor(s) to make multiple panels
# what follows is unused and optional
rawdata = NULL, # unused
# what follows are optional
lineParams = list(),
pointParams = list(),
errorbarParams = list(),
jitterParams = list(),
violinParams = list(),
facetParams = list(),
xAsFactor = TRUE # should the horizontal axis be continuous?
) {
runDebug("point", "Entering superbPlot.corset", c("xfactor2", "groupingfactor2", "addfactors2"), list(xfactor, groupingfactor, addfactors))
mysym <- function(x) { if(is.character(x)) sym(x) else x }
# depending on the scale of the x-axis.
if (!xAsFactor)
summarydata[[xfactor]] = unfactor(summarydata[[xfactor]])
# rename column "DV" as "center"
rawdata$center <- rawdata$DV
# find which segments are increasing (for colorize=TRUE option)
rawdataB <- rawdata
if (exists("id", where = rawdata)) {
# indicate if data are increasing or decreasing
rawdataB <- rawdata[order(rawdata$id),]
rawdataB$ypost <- c(with(rawdataB, embed(center,2)[,1]),0)
rawdataB$increase <- factor(rawdataB$ypost > rawdataB$center)
}
# remove colorize option if present
temp <- FALSE
if (exists("colorize", where = lineParams)){
temp <- lineParams$colorize
lineParams$colorize <- NULL
}
# set direction (for antagonize = TRUE option)
rawdataB$dir <- 2*(as.numeric(rawdataB[[xfactor]]) %/% 2) -1
# compute individual lines
if (temp) {
dolines <- do.call(geom_line, modifyList(
list(data = rawdataB,
linewidth=0.2, alpha = 0.25,
mapping = aes( y = center, group = id, color = increase ) ),
lineParams
))
} else {
dolines <- do.call(geom_line, modifyList(
list(data = rawdata,
linewidth=0.2, alpha = 0.25,
mapping = aes( y = center, group = id ) ),
lineParams
))
}
# determining the type of jitter based on the presence or not of a groupingfac
if (is.null(groupingfactor)) {
do_jitters = do.call(geom_jitter, modifyList(
list(data = rawdata, alpha = 0.2, width = 0.025, height = 0.0,
mapping = aes( y = center ) ),
jitterParams
) )
do_violins = do.call( geom_flat_violin, modifyList(
list(data = rawdataB,
mapping = aes( y = center, direction = dir ),
push = 0.1, width = 0.5,
scale = "area", trim = FALSE, alpha = 0.25),
violinParams
) )
} else {
do_jitters = do.call(geom_point, modifyList(
list(data = rawdata , alpha = 0.2,
position = position_jitterdodge(jitter.width=0.1 , dodge.width=.75 ),
mapping = aes(y = center, group = !!mysym(groupingfactor) ) ),
jitterParams
) )
do_violins = do.call( geom_flat_violin, modifyList(
list(data = rawdataB,
position = position_dodge(0.75), #"dodge",
mapping = aes( y = center, fill = !!mysym(groupingfactor), direction = dir ),
push = 0.1, width = 0.5,
scale = "area", trim = FALSE, alpha = 0.25),
violinParams
) )
}
# let's do the plot!
plot <- ggplot(
summarydata,
aes(
x = !!mysym(xfactor),
y = center,
shape = !!mysym(groupingfactor),
fill = !!mysym(groupingfactor),
colour = !!mysym(groupingfactor)
)) +
# violins in the back
do_violins +
# jitters second
do_jitters +
# the individual lines
dolines +
# the error bars
do.call(geom_superberrorbar, modifyList(
list(linewidth = 0.75, width=0.15, position = position_dodge2(width=0.15, padding=0.4), #width = 0.2,
#mapping = aes_string(ymin = "center + lowerwidth", ymax = "center + upperwidth") ),
mapping = aes(ymin = center + lowerwidth, ymax = center + upperwidth) ),
errorbarParams
)) +
# the points
do.call(geom_point, modifyList(
list(size = 3, position = position_dodge2(width =0.8-0.1/1),
mapping = aes(color = !!mysym(groupingfactor)) ),
pointParams
)) +
# the panels (rows or both rows and columns, NULL if no facet)
do.call( facet_grid, modifyList(
list( rows = addfactors ),
facetParams
))
return(plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.