context("callbacks")
source("utils.R")
# generate dummy training data
data <- matrix(rexp(1000*784), nrow = 1000, ncol = 784)
labels <- matrix(round(runif(1000*10, min = 0, max = 9)), nrow = 1000, ncol = 10)
# genereate dummy input data
input <- matrix(rexp(10*784), nrow = 10, ncol = 784)
define_compile_and_fit <- function(callbacks) {
model <- define_and_compile_model()
fit(model, data, labels, callbacks = callbacks, epochs = 1)
}
test_callback <- function(name, callback, h5py = FALSE, required_version = NULL) {
test_succeeds(required_version = required_version,
paste0("callback_", name, " is called back"), {
if (h5py && !have_h5py())
skip(paste(name, "test requires h5py package"))
define_compile_and_fit(callbacks = list(callback))
})
}
test_callback("progbar_logger", callback_progbar_logger())
test_callback("model_checkpoint", callback_model_checkpoint(tempfile(fileext = ".h5")), h5py = TRUE)
test_callback("learning_rate_scheduler", callback_learning_rate_scheduler(schedule = function (index, ...) {
0.1
}))
if (is_keras_available() && is_backend("tensorflow"))
test_callback("tensorboard", callback_tensorboard(log_dir = "./tb_logs"))
test_callback("terminate_on_naan", callback_terminate_on_naan(), required_version = "2.0.5")
test_callback("reduce_lr_on_plateau", callback_reduce_lr_on_plateau(monitor = "loss"))
test_callback("csv_logger", callback_csv_logger(tempfile(fileext = ".csv")))
test_callback("lambd", callback_lambda(
on_epoch_begin = function(epoch, logs) {
cat("Epoch Begin\n")
},
on_epoch_end = function(epoch, logs) {
cat("Epoch End\n")
}
))
test_succeeds("lambda callbacks other args", {
x <- layer_input(shape = 1)
y <- layer_dense(x, units = 1)
model <- keras_model(x, y)
model %>% compile(optimizer = "adam", loss = "mae")
warns <- capture_warnings(
clb <- callback_lambda(
on_epoch_begin = function(epoch, logs) {
cat("Epoch Begin")
},
on_epoch_end = function(epoch, logs) {
cat("Epoch End")
},
on_predict_begin = function(epoch, logs) {
cat("Prediction Begin")
},
on_test_begin = function(epoch, logs) {
cat("Test Begin")
}
)
)
if (get_keras_implementation() == "tensorflow" &&
tensorflow::tf_version() >= "2.0") {
expect_equal(length(warns), 0)
} else {
expect_equal(length(warns), 2)
}
warns <- capture_warnings(
out <- capture_output(
pred <- predict(model, matrix(1:10, ncol = 1), callbacks = list(clb))
)
)
if (get_keras_implementation() == "tensorflow" &&
tensorflow::tf_version() >= "2.0") {
expect_equal(length(warns), 0)
expect_equal(out, "Prediction Begin")
} else {
expect_equal(length(warns), 1)
expect_equal(out, "")
}
warns <- capture_warnings(
out <- capture_output(
pred <- evaluate(model, matrix(1:10, ncol = 1), y = 1:10,
callbacks = list(clb))
)
)
if (get_keras_implementation() == "tensorflow" &&
tensorflow::tf_version() >= "2.0") {
expect_equal(length(warns), 0)
expect_equal(out, "Test Begin")
} else {
expect_equal(length(warns), 1)
expect_equal(out, "")
}
})
test_succeeds("custom callbacks", {
CustomCallback <- R6::R6Class("CustomCallback",
inherit = KerasCallback,
public = list(
on_train_begin = function(logs) {
print("TRAIN BEGIN\n")
},
on_train_end = function(logs) {
print("TRAIN END\n")
}
)
)
LossHistory <- R6::R6Class("LossHistory",
inherit = KerasCallback,
public = list(
losses = NULL,
on_batch_end = function(batch, logs = list()) {
self$losses <- c(self$losses, logs[["loss"]])
}
))
cc <- CustomCallback$new()
lh <- LossHistory$new()
define_compile_and_fit(callbacks = list(cc, lh))
expect_is(lh$losses, "numeric")
})
expect_warns_and_out <- function(warns, out) {
if (get_keras_implementation() == "tensorflow" &&
tensorflow::tf_version() >= "2.0") {
expect_equal(out, c("PREDICT BEGINPREDICT END"))
expect_equal(warns, character())
} else {
expect_equal(out, "")
expect_true(warns != "")
}
}
test_succeeds("on predict/evaluation callbacks", {
CustomCallback <- R6::R6Class(
"CustomCallback",
inherit = KerasCallback,
public = list(
on_predict_begin = function(logs) {
cat("PREDICT BEGIN")
},
on_predict_end = function(logs) {
cat("PREDICT END")
},
on_test_begin = function(logs) {
cat("PREDICT BEGIN")
},
on_test_end = function(logs) {
cat("PREDICT END")
}
)
)
input <- layer_input(shape = 1)
output <- layer_dense(input, 1)
model <- keras_model(input, output)
model %>% compile(optimizer = "adam", loss = "mae")
cc <- CustomCallback$new()
# test for prediction
warns <- capture_warnings(
out <- capture_output(
pred <- predict(model, x = matrix(1:10, ncol = 1), callbacks = cc)
)
)
expect_warns_and_out(warns, out)
gen <- function() {
list(matrix(1:10, ncol = 1))
}
warns <- capture_warnings(
out <- capture_output(
pred <- predict_generator(model, gen, callbacks = cc, steps = 1)
)
)
expect_warns_and_out(warns, out)
# tests for evaluation
warns <- capture_warnings(
out <- capture_output(
ev <- evaluate(model, x = matrix(1:10, ncol = 1), y = 1:10, callbacks = cc)
)
)
expect_warns_and_out(warns, out)
gen <- function() {
list(matrix(1:10, ncol = 1), 1:10)
}
warns <- capture_warnings(
out <- capture_output(
ev <- evaluate_generator(model, gen, callbacks = cc, steps = 1)
)
)
expect_warns_and_out(warns, out)
})
test_succeeds("warnings for new callback moment", {
CustomCallback <- R6::R6Class(
"CustomCallback",
inherit = KerasCallback,
public = list(
on_predict_begin = function(logs) {
cat("PREDICT BEGIN")
},
on_predict_end = function(logs) {
cat("PREDICT END")
},
on_test_begin = function(logs) {
cat("PREDICT BEGIN")
},
on_test_end = function(logs) {
cat("PREDICT END")
}
)
)
cc <- CustomCallback$new()
input <- layer_input(shape = 1)
output <- layer_dense(input, 1)
model <- keras_model(input, output)
model %>% compile(optimizer = "adam", loss = "mae")
warns <- capture_warnings(
model %>%
fit(x = matrix(1:10, ncol = 1), y = 1:10, callbacks = list(cc),
verbose = 0, epochs = 2)
)
if (get_keras_implementation() == "tensorflow" && tensorflow::tf_version() < "2.0")
expect_equal(length(warns), 4)
else
expect_equal(length(warns), 0)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.