library(keras)
# create model
model <- keras_model_sequential()
# add layers and compile the model
model %>%
layer_dense(units = 32, activation = 'relu', input_shape = c(100)) %>%
layer_dense(units = 1, activation = 'sigmoid') %>%
compile(
optimizer = 'rmsprop',
loss = 'binary_crossentropy',
metrics = c('accuracy')
)
# Generate dummy data
data <- matrix(runif(1000*100), nrow = 1000, ncol = 100)
labels <- matrix(round(runif(1000, min = 0, max = 1)), nrow = 1000, ncol = 1)
# create callbacks
callbacks <- list(
callback_csv_logger("cbk_history.csv")
)
if (tensorflow::tf_version() >= "1.14") {
callbacks[[2]] <- callback_model_checkpoint("cbk_checkpoint.h5")
} else {
callbacks[[2]] <- callback_model_checkpoint("cbk_checkpoint.h5",
save_freq = NULL, period = 1)
}
if (is_backend("tensorflow"))
callbacks <- append(callbacks, callback_tensorboard(log_dir = "tflogs"))
# Train the model, iterating on the data in batches of 32 samples
model %>% fit(
data,
labels,
epochs=10,
batch_size=32,
validation_split = 0.2,
callbacks = callbacks,
view_metrics = FALSE
)
# Save model and weights
save_model_hdf5(model, "model.h5")
if (!utils::file_test("-d", "weights"))
dir.create("weights")
save_model_weights_hdf5(model, file.path("weights", "weights.h5"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.