lfJSDM <- function(formula, data, inits, priors, n.factors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples),
n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100,
k.fold.only = FALSE, ...){
ptm <- proc.time()
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
# Make it look nice
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing to run the model\n");
cat("----------------------------------------\n");
}
# Check for unused arguments ------------------------------------------
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
# Call ----------------------------------------------------------------
# Returns a call in which all of the specified arguments are
# specified by their full names.
cl <- match.call()
# Some initial checks -------------------------------------------------
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
data.orig <- data
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
if (length(dim(data$y)) != 2) {
stop("error: detection-nondetection data y must be a two-dimensional array with dimensions corresponding to species and sites.")
}
y <- data$y
sp.names <- attr(y, 'dimnames')[[1]]
if (!'covs' %in% names(data)) {
if (formula == ~ 1) {
if (verbose) {
message("covariates (covs) not specified in data.\nAssuming intercept only model.\n")
}
data$covs <- matrix(1, dim(y)[2], 1)
} else {
stop("error: covs must be specified in data for a model with covariates")
}
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
if (missing(n.factors)) {
stop("error: n.factors must be specified for a latent factor JSDM")
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a latent factor JSDM.")
}
coords <- as.matrix(data$coords)
# First subset detection covariates to only use those that are included in the analysis.
data$covs <- as.data.frame(data$covs)
# Checking missing values ---------------------------------------------
y.na.test <- apply(y, c(1, 2), function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop("error: some sites in y have missing data. Remove these from the data, and subsequently predict at those sites if interested.")
}
# occ.covs ------------------------
if (sum(is.na(data$covs)) != 0) {
stop("error: missing values in covs. Please remove these sites from all objects in data or somehow replace the NA values with non-missing values (e.g., mean imputation).")
}
# Check whether random effects are sent in as numeric, and
# return error if they are.
# Occurrence ----------------------
if (!is.null(findbars(formula))) {
re.names <- sapply(findbars(formula), all.vars)
for (i in 1:length(re.names)) {
if (is(data$covs[, re.names[i]], 'factor')) {
stop(paste("error: random effect variable ", re.names[i], " specified as a factor. Random effect variables must be specified as numeric.", sep = ''))
}
if (is(data$covs[, re.names[i]], 'character')) {
stop(paste("error: random effect variable ", re.names[i], " specified as character. Random effect variables must be specified as numeric.", sep = ''))
}
}
}
# Formula -------------------------------------------------------------
# Occupancy -----------------------
if (missing(formula)) {
stop("error: formula must be specified")
}
if (is(formula, 'formula')) {
tmp <- parseFormula(formula, data$covs)
X <- as.matrix(tmp[[1]])
X.re <- as.matrix(tmp[[4]])
x.re.names <- colnames(X.re)
x.names <- tmp[[2]]
} else {
stop("error: formula is misspecified")
}
# Get RE level names
re.level.names <- lapply(data$covs[, x.re.names, drop = FALSE],
function (a) sort(unique(a)))
# Extract data from inputs --------------------------------------------
# Number of species
N <- dim(y)[1]
# Number of latent factors
q <- n.factors
# Number of occupancy parameters
p.occ <- ncol(X)
# Number of occupancy random effect parameters
p.occ.re <- ncol(X.re)
# Number of latent occupancy random effect values
n.occ.re <- length(unlist(apply(X.re, 2, unique)))
n.occ.re.long <- apply(X.re, 2, function(a) length(unique(a)))
# Number of sites
J <- nrow(X)
if (missing(n.samples)) {
stop("error: must specify number of MCMC samples")
}
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
# Check if n.burn, n.thin, and n.samples result in an integer and error if otherwise.
if (((n.samples - n.burn) / n.thin) %% 1 != 0) {
stop("the number of posterior samples to save ((n.samples - n.burn) / n.thin) is not a whole number. Please respecify the MCMC criteria such that the number of posterior samples saved is a whole number.")
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
# y is order as follows: sorted by site, then species within site
y.big <- y
y <- c(y)
# Get random effect matrices all set ----------------------------------
if (p.occ.re > 1) {
for (j in 2:p.occ.re) {
X.re[, j] <- X.re[, j] + max(X.re[, j - 1]) + 1
}
}
# Priors --------------------------------------------------------------
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
# beta.comm -----------------------
if ("beta.comm.normal" %in% names(priors)) {
if (!is.list(priors$beta.comm.normal) | length(priors$beta.comm.normal) != 2) {
stop("error: beta.comm.normal must be a list of length 2")
}
mu.beta.comm <- priors$beta.comm.normal[[1]]
sigma.beta.comm <- priors$beta.comm.normal[[2]]
if (length(mu.beta.comm) != p.occ & length(mu.beta.comm) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.occ, " with elements corresponding to beta.comms' mean", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to beta.comms' mean", sep = ""))
}
}
if (length(sigma.beta.comm) != p.occ & length(sigma.beta.comm) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.occ, " with elements corresponding to beta.comms' variance", sep = ""))
} else {
stop(paste("error: beta.comm.normal[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to beta.comms' variance", sep = ""))
}
}
if (length(sigma.beta.comm) != p.occ) {
sigma.beta.comm <- rep(sigma.beta.comm, p.occ)
}
if (length(mu.beta.comm) != p.occ) {
mu.beta.comm <- rep(mu.beta.comm, p.occ)
}
Sigma.beta.comm <- sigma.beta.comm * diag(p.occ)
} else {
if (verbose) {
message("No prior specified for beta.comm.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta.comm <- rep(0, p.occ)
sigma.beta.comm <- rep(2.72, p.occ)
Sigma.beta.comm <- diag(p.occ) * 2.72
}
# tau.sq.beta -----------------------
if ("tau.sq.beta.ig" %in% names(priors)) {
if (!is.list(priors$tau.sq.beta.ig) | length(priors$tau.sq.beta.ig) != 2) {
stop("error: tau.sq.beta.ig must be a list of length 2")
}
tau.sq.beta.a <- priors$tau.sq.beta.ig[[1]]
tau.sq.beta.b <- priors$tau.sq.beta.ig[[2]]
if (length(tau.sq.beta.a) != p.occ & length(tau.sq.beta.a) != 1) {
if (p.occ == 1) {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.occ, " with elements corresponding to tau.sq.betas' shape", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to tau.sq.betas' shape", sep = ""))
}
}
if (length(tau.sq.beta.b) != p.occ & length(tau.sq.beta.b) != 1) {
if (p.occ == 1) {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.occ, " with elements corresponding to tau.sq.betas' scale", sep = ""))
} else {
stop(paste("error: tau.sq.beta.ig[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to tau.sq.betas' scale", sep = ""))
}
}
if (length(tau.sq.beta.a) != p.occ) {
tau.sq.beta.a <- rep(tau.sq.beta.a, p.occ)
}
if (length(tau.sq.beta.b) != p.occ) {
tau.sq.beta.b <- rep(tau.sq.beta.b, p.occ)
}
} else {
if (verbose) {
message("No prior specified for tau.sq.beta.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
tau.sq.beta.a <- rep(0.1, p.occ)
tau.sq.beta.b <- rep(0.1, p.occ)
}
# sigma.sq.psi --------------------
if (p.occ.re > 0) {
if ("sigma.sq.psi.ig" %in% names(priors)) {
if (!is.list(priors$sigma.sq.psi.ig) | length(priors$sigma.sq.psi.ig) != 2) {
stop("error: sigma.sq.psi.ig must be a list of length 2")
}
sigma.sq.psi.a <- priors$sigma.sq.psi.ig[[1]]
sigma.sq.psi.b <- priors$sigma.sq.psi.ig[[2]]
if (length(sigma.sq.psi.a) != p.occ.re & length(sigma.sq.psi.a) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' shape", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[1]] must be a vector of length ",
p.occ.re, " or 1 with elements corresponding to sigma.sq.psis' shape", sep = ""))
}
}
if (length(sigma.sq.psi.b) != p.occ.re & length(sigma.sq.psi.b) != 1) {
if (p.occ.re == 1) {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " with elements corresponding to sigma.sq.psis' scale", sep = ""))
} else {
stop(paste("error: sigma.sq.psi.ig[[2]] must be a vector of length ",
p.occ.re, " or 1with elements corresponding to sigma.sq.psis' scale", sep = ""))
}
}
if (length(sigma.sq.psi.a) != p.occ.re) {
sigma.sq.psi.a <- rep(sigma.sq.psi.a, p.occ.re)
}
if (length(sigma.sq.psi.b) != p.occ.re) {
sigma.sq.psi.b <- rep(sigma.sq.psi.b, p.occ.re)
}
} else {
if (verbose) {
message("No prior specified for sigma.sq.psi.ig.\nSetting prior shape to 0.1 and prior scale to 0.1\n")
}
sigma.sq.psi.a <- rep(0.1, p.occ.re)
sigma.sq.psi.b <- rep(0.1, p.occ.re)
}
} else {
sigma.sq.psi.a <- 0
sigma.sq.psi.b <- 0
}
# Initial values --------------------------------------------------------
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
# beta.comm -----------------------
# ORDER: a p.occ vector ordered by the effects in the formula.
if ("beta.comm" %in% names(inits)) {
beta.comm.inits <- inits[["beta.comm"]]
if (length(beta.comm.inits) != p.occ & length(beta.comm.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for beta.comm must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for beta.comm must be of length ", p.occ,
, " or 1", sep = ""))
}
}
if (length(beta.comm.inits) != p.occ) {
beta.comm.inits <- rep(beta.comm.inits, p.occ)
}
} else {
beta.comm.inits <- rnorm(p.occ, mu.beta.comm, sqrt(sigma.beta.comm))
if (verbose) {
message('beta.comm is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
# tau.sq.beta ------------------------
# ORDER: a p.occ vector ordered by the effects in the occurrence formula
if ("tau.sq.beta" %in% names(inits)) {
tau.sq.beta.inits <- inits[["tau.sq.beta"]]
if (length(tau.sq.beta.inits) != p.occ & length(tau.sq.beta.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for tau.sq.beta must be of length ", p.occ,
" or 1", sep = ""))
}
}
if (length(tau.sq.beta.inits) != p.occ) {
tau.sq.beta.inits <- rep(tau.sq.beta.inits, p.occ)
}
} else {
tau.sq.beta.inits <- runif(p.occ, 0.5, 10)
if (verbose) {
message('tau.sq.beta is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n')
}
}
# beta ----------------------------
# ORDER: N x p.occ matrix sent in as a column-major vector ordered by
# parameter then species within parameter.
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (is.matrix(beta.inits)) {
if (ncol(beta.inits) != p.occ | nrow(beta.inits) != N) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
N, "x", p.occ, " or a single numeric value", sep = ""))
}
}
if (!is.matrix(beta.inits) & length(beta.inits) != 1) {
stop(paste("error: initial values for beta must be a matrix with dimensions ",
N, " x ", p.occ, " or a single numeric value", sep = ""))
}
if (length(beta.inits) == 1) {
beta.inits <- matrix(beta.inits, N, p.occ)
}
} else {
beta.inits <- matrix(rnorm(N * p.occ, beta.comm.inits, sqrt(tau.sq.beta.inits)), N, p.occ)
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the community-level normal distribution\n')
}
}
# Create a N * p.occ x 1 matrix of the species-level regression coefficients.
# This is ordered by parameter, then species within a parameter.
beta.inits <- c(beta.inits)
# lambda ----------------------------
# ORDER: an N x q matrix sent in as a column-major vector, which is ordered by
# factor, then species within factor.
if (q != 0) {
if ("lambda" %in% names(inits)) {
lambda.inits <- inits[["lambda"]]
if (!is.matrix(lambda.inits)) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
N, " x ", q, sep = ""))
}
if (nrow(lambda.inits) != N | ncol(lambda.inits) != q) {
stop(paste("error: initial values for lambda must be a matrix with dimensions ",
N, " x ", q, sep = ""))
}
if (!all.equal(diag(lambda.inits), rep(1, q))) {
stop("error: diagonal of inits$lambda matrix must be all 1s")
}
if (sum(lambda.inits[upper.tri(lambda.inits)]) != 0) {
stop("error: upper triangle of inits$lambda must be all 0s")
}
} else {
lambda.inits <- matrix(0, N, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
if (verbose) {
message("lambda is not specified in initial values.\nSetting initial values of the lower triangle to random values from a standard normal\n")
}
# lambda.inits are organized by factor, then by species. This is necessary for working
# with dgemv.
lambda.inits <- c(lambda.inits)
}
} else {
lambda.inits <- 0
}
# sigma.sq.psi ------------------
# ORDER: a length p.occ.re vector ordered by the random effects in the formula.
if (p.occ.re > 0) {
if ("sigma.sq.psi" %in% names(inits)) {
sigma.sq.psi.inits <- inits[["sigma.sq.psi"]]
if (length(sigma.sq.psi.inits) != p.occ.re & length(sigma.sq.psi.inits) != 1) {
if (p.occ.re == 1) {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
sep = ""))
} else {
stop(paste("error: initial values for sigma.sq.psi must be of length ", p.occ.re,
" or 1", sep = ""))
}
}
if (length(sigma.sq.psi.inits) != p.occ.re) {
sigma.sq.psi.inits <- rep(sigma.sq.psi.inits, p.occ.re)
}
} else {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
if (verbose) {
message("sigma.sq.psi is not specified in initial values.\nSetting initial values to random values between 0.5 and 10\n")
}
}
beta.star.indx <- rep(0:(p.occ.re - 1), n.occ.re.long)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
beta.star.inits <- rep(beta.star.inits, N)
} else {
sigma.sq.psi.inits <- 0
beta.star.indx <- 0
beta.star.inits <- 0
}
# Should initial values be fixed --
if ("fix" %in% names(inits)) {
fix.inits <- inits[["fix"]]
if ((fix.inits != TRUE) & (fix.inits != FALSE)) {
stop(paste("error: inits$fix must take value TRUE or FALSE"))
}
} else {
fix.inits <- FALSE
}
if (verbose & fix.inits & (n.chains > 1)) {
message("Fixing initial values across all chains\n")
}
# Set model.deviance to NA for returning when no cross-validation
model.deviance <- NA
curr.chain <- 1
# Set storage for all variables ---------------------------------------
storage.mode(y) <- "double"
storage.mode(X) <- "double"
consts <- c(N, J, p.occ, p.occ.re, n.occ.re, q)
storage.mode(consts) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(beta.comm.inits) <- "double"
storage.mode(tau.sq.beta.inits) <- "double"
storage.mode(lambda.inits) <- "double"
storage.mode(mu.beta.comm) <- "double"
storage.mode(Sigma.beta.comm) <- "double"
storage.mode(tau.sq.beta.a) <- "double"
storage.mode(tau.sq.beta.b) <- "double"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
# chain.info order: current chain, total number of chains
chain.info <- c(curr.chain, n.chains)
storage.mode(chain.info) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
# samples.info order: burn-in, thinning rate, number of posterior samples
samples.info <- c(n.burn, n.thin, n.post.samples)
storage.mode(samples.info) <- "integer"
# For occurrence random effects
storage.mode(X.re) <- "integer"
beta.level.indx <- sort(unique(c(X.re)))
storage.mode(beta.level.indx) <- "integer"
storage.mode(sigma.sq.psi.inits) <- "double"
storage.mode(sigma.sq.psi.a) <- "double"
storage.mode(sigma.sq.psi.b) <- "double"
storage.mode(beta.star.inits) <- "double"
storage.mode(beta.star.indx) <- "integer"
# Initial seed
if (! exists(".Random.seed")) runif(1)
init.seed <- .Random.seed
# Fit the model ---------------------------------------------------------
out.tmp <- list()
# Random seed information for each chain of the model.
seeds.list <- list()
out <- list()
if (!k.fold.only) {
for (i in 1:n.chains) {
# Change initial values if i > 1
if ((i > 1) & (!fix.inits)) {
beta.comm.inits <- rnorm(p.occ, mu.beta.comm, sqrt(sigma.beta.comm))
tau.sq.beta.inits <- runif(p.occ, 0.5, 10)
beta.inits <- matrix(rnorm(N * p.occ, beta.comm.inits,
sqrt(tau.sq.beta.inits)), N, p.occ)
beta.inits <- c(beta.inits)
if (q != 0) {
lambda.inits <- matrix(0, N, q)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
lambda.inits <- c(lambda.inits)
}
if (p.occ.re > 0) {
sigma.sq.psi.inits <- runif(p.occ.re, 0.5, 10)
beta.star.inits <- rnorm(n.occ.re, 0, sqrt(sigma.sq.psi.inits[beta.star.indx + 1]))
beta.star.inits <- rep(beta.star.inits, N)
}
}
storage.mode(chain.info) <- "integer"
# Run the model in C
out.tmp[[i]] <- .Call("lfJSDM", y, X, X.re, consts, n.occ.re.long, beta.inits,
beta.comm.inits, tau.sq.beta.inits, lambda.inits,
sigma.sq.psi.inits, beta.star.inits,
beta.star.indx, beta.level.indx,
mu.beta.comm, Sigma.beta.comm,
tau.sq.beta.a, tau.sq.beta.b,
sigma.sq.psi.a, sigma.sq.psi.b,
n.samples, n.omp.threads, verbose, n.report,
samples.info, chain.info)
chain.info[1] <- chain.info[1] + 1
seeds.list[[i]] <- .Random.seed
}
# Calculate R-Hat ---------------
out$rhat <- list()
if (n.chains > 1) {
# as.vector removes the "Upper CI" when there is only 1 variable.
out$rhat$beta.comm <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.comm.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$tau.sq.beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$tau.sq.beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
out$rhat$beta <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
if (q > 0) {
lambda.mat <- matrix(lambda.inits, N, q)
out$rhat$lambda.lower.tri <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$lambda.samples[c(lower.tri(lambda.mat)), ])))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- as.vector(gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$sigma.sq.psi.samples)))),
autoburnin = FALSE, multivariate = FALSE)$psrf[, 2])
}
} else {
out$rhat$beta.comm <- rep(NA, p.occ)
out$rhat$tau.sq.beta <- rep(NA, p.occ)
out$rhat$beta <- rep(NA, p.occ * N)
if (p.occ.re > 0) {
out$rhat$sigma.sq.psi <- rep(NA, p.occ.re)
}
}
# Put everything into MCMC objects
out$beta.comm.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.comm.samples))))
colnames(out$beta.comm.samples) <- x.names
out$tau.sq.beta.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$tau.sq.beta.samples))))
colnames(out$tau.sq.beta.samples) <- x.names
if (is.null(sp.names)) {
sp.names <- paste('sp', 1:N, sep = '')
}
coef.names <- paste(rep(x.names, each = N), sp.names, sep = '-')
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- coef.names
if (p.occ.re > 0) {
out$sigma.sq.psi.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$sigma.sq.psi.samples))))
colnames(out$sigma.sq.psi.samples) <- x.re.names
out$beta.star.samples <- mcmc(
do.call(rbind, lapply(out.tmp, function(a) t(a$beta.star.samples))))
tmp.names <- unlist(re.level.names)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long), tmp.names, sep = '-')
beta.star.names <- paste(beta.star.names, rep(sp.names, each = n.occ.re), sep = '-')
colnames(out$beta.star.samples) <- beta.star.names
out$re.level.names <- re.level.names
}
if (q > 0) {
loadings.names <- paste(rep(sp.names, times = n.factors), rep(1:n.factors, each = N), sep = '-')
out$lambda.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$lambda.samples))))
colnames(out$lambda.samples) <- loadings.names
}
# Return things back in the original order.
out$z.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$z.samples,
dim = c(N, J, n.post.samples))))
out$z.samples <- aperm(out$z.samples, c(3, 1, 2))
out$psi.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$psi.samples,
dim = c(N, J, n.post.samples))))
out$psi.samples <- aperm(out$psi.samples, c(3, 1, 2))
out$like.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$like.samples,
dim = c(N, J, n.post.samples))))
out$like.samples <- aperm(out$like.samples, c(3, 1, 2))
if (q > 0) {
out$w.samples <- do.call(abind, lapply(out.tmp, function(a) array(a$w.samples,
dim = c(q, J, n.post.samples))))
out$w.samples <- aperm(out$w.samples, c(3, 1, 2))
}
# Calculate effective sample sizes
out$ESS <- list()
out$ESS$beta.comm <- effectiveSize(out$beta.comm.samples)
out$ESS$tau.sq.beta <- effectiveSize(out$tau.sq.beta.samples)
out$ESS$beta <- effectiveSize(out$beta.samples)
if (q > 0) {
out$ESS$lambda <- effectiveSize(out$lambda.samples)
}
if (p.occ.re > 0) {
out$ESS$sigma.sq.psi <- effectiveSize(out$sigma.sq.psi.samples)
}
out$X <- X
out$X.re <- X.re
out$y <- y.big
out$call <- cl
out$n.samples <- n.samples
out$x.names <- x.names
out$sp.names <- sp.names
out$q <- q
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
out$coords <- coords
if (p.occ.re > 0) {
out$psiRE <- TRUE
} else {
out$psiRE <- FALSE
}
# Send out objects needed for updateMCMC
update.list <- list()
update.list$n.samples <- n.samples
update.list$n.omp.threads <- n.omp.threads
update.list$data <- data.orig
update.list$priors <- priors
update.list$formula <- formula
# Random seed to have for updating.
update.list$final.seed <- seeds.list
out$update <- update.list
}
# K-fold cross-validation -------
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
# Currently implemented without parellization.
set.seed(k.fold.seed)
# Number of sites in each hold out data set.
sites.random <- sample(1:J)
sites.k.fold <- split(sites.random, sites.random %% k.fold)
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = "+") %dopar% {
curr.set <- sort(sites.random[sites.k.fold[[i]]])
y.fit <- c(y.big[, -curr.set, drop = FALSE])
y.fit <- y.fit[!is.na(y.fit)]
y.0 <- c(y.big[, curr.set, drop = FALSE])
y.0 <- y.0[!is.na(y.0)]
y.big.fit <- y.big[, -curr.set, drop = FALSE]
y.big.0 <- y.big[, curr.set, drop = FALSE]
X.fit <- X[-curr.set, , drop = FALSE]
X.0 <- X[curr.set, , drop = FALSE]
coords.fit <- coords[-curr.set, , drop = FALSE]
coords.0 <- coords[curr.set, , drop = FALSE]
J.fit <- nrow(X.fit)
J.0 <- nrow(X.0)
coords.fit <- coords[-curr.set, , drop = FALSE]
coords.0 <- coords[curr.set, , drop = FALSE]
J.fit <- nrow(X.fit)
J.0 <- nrow(X.0)
# Random occurrence effects
X.re.fit <- X.re[-curr.set, , drop = FALSE]
X.re.0 <- X.re[curr.set, , drop = FALSE]
n.occ.re.fit <- length(unique(c(X.re.fit)))
n.occ.re.long.fit <- apply(X.re.fit, 2, function(a) length(unique(a)))
if (p.occ.re > 0) {
beta.star.indx.fit <- rep(0:(p.occ.re - 1), n.occ.re.long.fit)
beta.level.indx.fit <- sort(unique(c(X.re.fit)))
beta.star.inits.fit <- rnorm(n.occ.re.fit, 0,
sqrt(sigma.sq.psi.inits[beta.star.indx.fit + 1]))
beta.star.inits.fit <- rep(beta.star.inits.fit, N)
re.level.names.fit <- list()
for (t in 1:p.occ.re) {
tmp.indx <- beta.level.indx.fit[beta.star.indx.fit == t - 1]
re.level.names.fit[[t]] <- re.level.names[[t]][tmp.indx + 1]
}
} else {
beta.star.indx.fit <- beta.star.indx
beta.level.indx.fit <- beta.level.indx
beta.star.inits.fit <- beta.star.inits
re.level.names.fit <- re.level.names
}
verbose.fit <- FALSE
n.omp.threads.fit <- 1
storage.mode(y.fit) <- "double"
storage.mode(X.fit) <- "double"
consts.fit <- c(N, J.fit, p.occ, p.occ.re, n.occ.re.fit, q)
storage.mode(consts.fit) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(n.samples) <- "integer"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(X.re.fit) <- "integer"
storage.mode(n.occ.re.long.fit) <- "integer"
storage.mode(beta.star.inits.fit) <- "double"
storage.mode(beta.star.indx.fit) <- "integer"
storage.mode(beta.level.indx.fit) <- "integer"
chain.info[1] <- 1
storage.mode(chain.info) <- "integer"
out.fit <- .Call("lfJSDM", y.fit, X.fit, X.re.fit, consts.fit,
n.occ.re.long.fit, beta.inits,
beta.comm.inits, tau.sq.beta.inits,
lambda.inits, sigma.sq.psi.inits,
beta.star.inits.fit,
beta.star.indx.fit, beta.level.indx.fit,
mu.beta.comm, Sigma.beta.comm,
tau.sq.beta.a, tau.sq.beta.b,
sigma.sq.psi.a, sigma.sq.psi.b,
n.samples, n.omp.threads.fit, verbose.fit, n.report,
samples.info, chain.info)
if (is.null(sp.names)) {
sp.names <- paste('sp', 1:N, sep = '')
}
coef.names <- paste(rep(x.names, each = N), sp.names, sep = '-')
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- coef.names
if (q > 0) {
loadings.names <- paste(rep(sp.names, times = n.factors),
rep(1:n.factors, each = N), sep = '-')
out.fit$lambda.samples <- mcmc(t(out.fit$lambda.samples))
colnames(out.fit$lambda.samples) <- loadings.names
}
out.fit$w.samples <- array(out.fit$w.samples, dim = c(q, J, n.post.samples))
out.fit$w.samples <- aperm(out.fit$w.samples, c(3, 1, 2))
out.fit$X <- X.fit
out.fit$y <- y.big
out.fit$call <- cl
out.fit$n.samples <- n.samples
out.fit$q <- q
out.fit$coords.fit
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
if (p.occ.re > 0) {
out.fit$sigma.sq.psi.samples <- mcmc(t(out.fit$sigma.sq.psi.samples))
colnames(out.fit$sigma.sq.psi.samples) <- x.re.names
out.fit$beta.star.samples <- mcmc(t(out.fit$beta.star.samples))
tmp.names <- unlist(re.level.names.fit)
beta.star.names <- paste(rep(x.re.names, n.occ.re.long.fit), tmp.names, sep = '-')
beta.star.names <- paste(beta.star.names, rep(sp.names, each = n.occ.re.fit),
sep = '-')
colnames(out.fit$beta.star.samples) <- beta.star.names
out.fit$re.level.names <- re.level.names.fit
out.fit$X.re <- X.re.fit
}
if (p.occ.re > 0) {
out.fit$psiRE <- TRUE
} else {
out.fit$psiRE <- FALSE
}
class(out.fit) <- "lfJSDM"
# Predict occurrence at new sites.
if (p.occ.re > 0) {
tmp <- unlist(re.level.names)
X.re.0 <- matrix(tmp[c(X.re.0 + 1)], nrow(X.re.0), ncol(X.re.0))
colnames(X.re.0) <- x.re.names
}
if (p.occ.re > 0) {X.0 <- cbind(X.0, X.re.0)}
out.pred <- predict.lfJSDM(out.fit, X.0, coords.0, ignore.RE = FALSE)
like.samples <- matrix(NA, N, J.0)
for (r in 1:N) {
for (j in 1:J.0) {
like.samples[r, j] <- mean(dbinom(y.big.0[r, j], 1, out.pred$psi.0.samples[, r, j]))
} # j
} # r
apply(like.samples, 1, function(a) sum(log(a), na.rm = TRUE))
}
model.deviance <- -2 * model.deviance
# Return objects from cross-validation
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
}
class(out) <- "lfJSDM"
out$run.time <- proc.time() - ptm
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.