#' Obtain the Grun pancreas data
#'
#' Obtain the human pancreas single-cell RNA-seq data from Grun et al. (2016).
#'
#' @param ensembl Logical scalar indicating whether the output row names should contain Ensembl identifiers.
#' @param location Logical scalar indicating whether genomic coordinates should be returned.
#'
#' @details
#' Row metadata contains fields for the symbol and chromosomal location of each gene,
#' as derived from the row names.
#'
#' Column metadata is derived from the column names of the count matrix with the sample annotations in GSE81076.
#' This includes the donor identity for each cell and the type of sample.
#'
#' The \code{"ERCC"} entry in the \code{\link{altExps}} contains count data for the ERCC spike-in transcripts.
#'
#' If \code{ensembl=TRUE}, the gene symbols are converted to Ensembl IDs in the row names of the output object.
#' Rows with missing Ensembl IDs are discarded, and only the first occurrence of duplicated IDs is retained.
#'
#' If \code{location=TRUE}, the coordinates of the Ensembl gene models are stored in the \code{\link{rowRanges}} of the output.
#' Note that this is only performed if \code{ensembl=TRUE}.
#'
#' All data are downloaded from ExperimentHub and cached for local re-use.
#' Specific resources can be retrieved by searching for \code{scRNAseq/grun-pancreas}.
#'
#' @return A \linkS4class{SingleCellExperiment} object with a single matrix of UMI counts.
#'
#' @author Aaron Lun,
#' using additional metadata obtained by Vladimir Kiselev.
#'
#' @references
#' Grun D et al. (2016).
#' De novo prediction of stem cell identity using single-cell transcriptome data.
#' \emph{Cell Stem Cell} 19(2), 266-277.
#'
#' @examples
#' sce <- GrunPancreasData()
#'
#' @export
#' @importFrom S4Vectors DataFrame
#' @importFrom SummarizedExperiment rowData<- colData<-
#' @importFrom SingleCellExperiment splitAltExps
GrunPancreasData <- function(ensembl=FALSE, location=TRUE) {
version <- "2.0.0"
sce <- .create_sce(file.path("grun-pancreas", version), has.rowdata=FALSE, has.coldata=FALSE)
# Loading the column metadata
lib.names <- sub("_.*", "", colnames(sce))
donor.names <- sub("(D10|D17|D2|D3|D7).*", "\\1", lib.names)
treatment <- c(
D10631="CD63+ sorted cells",
D101="live sorted cells, library 1",
D102="live sorted cells, library 2",
D1713="CD13+ sorted cells",
D172444="CD24+ CD44+ live sorted cells",
D17All1="live sorted cells, library 1",
D17All2="live sorted cells, library 2",
D17TGFB="TGFBR3+ sorted cells",
D2ex="exocrine fraction, live sorted cells",
D3en1="live sorted cells, library 1",
D3en2="live sorted cells, library 2",
D3en3="live sorted cells, library 3",
D3en4="live sorted cells, library 4",
D3ex="exocrine fraction, live sorted cells",
D71="live sorted cells, library 1",
D72="live sorted cells, library 2",
D73="live sorted cells, library 3",
D74="live sorted cells, library 4"
)[lib.names]
colData(sce) <- DataFrame(donor=donor.names, sample=treatment, row.names=colnames(sce))
# Splitting up gene information.
symbol <- sub("__.*", "", rownames(sce))
loc <- sub(".*__", "", rownames(sce))
rowData(sce) <- DataFrame(symbol=symbol, chr=loc)
# Splitting spike-ins into an alternative experiment.
status <- ifelse(grepl("ERCC-[0-9]+", symbol), "ERCC", "endogenous")
sce <- splitAltExps(sce, status, ref="endogenous")
spike.exp <- altExp(sce, "ERCC")
spikedata <- ERCCSpikeInConcentrations(volume = 20, dilution = 50000)
spikedata <- spikedata[rownames(spike.exp), ]
rowData(spike.exp) <- cbind(rowData(spike.exp), spikedata)
altExp(sce, "ERCC") <- spike.exp
.convert_to_ensembl(sce,
symbols=rowData(sce)$symbol,
species="Hs",
ensembl=ensembl,
location=location)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.