#' Plot method for model parameters
#'
#' The `plot()` method for the `parameters::model_parameters()` function.
#'
#' @param type Character indicating the type of plot. Only applies for model
#' parameters from meta-analysis objects (e.g. \pkg{metafor}).
#' @param component Character indicating which component of the model should be
#' plotted.
#' @param weight_points Logical. If `TRUE`, for meta-analysis objects, point
#' size will be adjusted according to the study-weights.
#' @inheritParams data_plot
#' @inheritParams plot.see_bayesfactor_parameters
#' @inheritParams plot.see_bayesfactor_models
#' @inheritParams plot.see_check_normality
#' @inheritParams plot.see_check_outliers
#' @inheritParams plot.see_parameters_brms_meta
#' @param show_estimate Should the point estimate of each parameter be shown?
#' (default: `TRUE`)
#' @param show_interval Should the compatibility interval(s) of each parameter
#' be shown? (default: `TRUE`)
#' @param show_density Should the compatibility density (i.e., posterior,
#' bootstrap, or confidence density) of each parameter be shown?
#' (default: `FALSE`)
#' @param show_direction Should the "direction" of coefficients (e.g., positive
#' or negative coefficients) be highlighted using different colors?
#' (default: `TRUE`)
#' @param log_scale Should exponentiated coefficients (e.g., odds-ratios) be
#' plotted on a log scale? (default: `FALSE`)
#' @param n_columns For models with multiple components (like fixed and random,
#' count and zero-inflated), defines the number of columns for the
#' panel-layout. If `NULL`, a single, integrated plot is shown.
#'
#' @return A ggplot2-object.
#'
#' @note By default, coefficients and their confidence intervals are colored
#' depending on whether they show a "positive" or "negative" association with
#' the outcome. E.g., in case of linear models, colors simply distinguish positive
#' or negative coefficients. For logistic regression models that are shown on the
#' odds ratio scale, colors distinguish odds ratios above or below 1. Use
#' `show_direction = FALSE` to disable this feature and only show a one-colored
#' forest plot.
#'
#' @examples
#' library(parameters)
#' m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
#' result <- model_parameters(m)
#' result
#' plot(result)
#' @export
plot.see_parameters_model <- function(x,
show_intercept = FALSE,
size_point = 0.8,
size_text = NA,
sort = NULL,
n_columns = NULL,
type = c("forest", "funnel"),
weight_points = TRUE,
show_labels = FALSE,
show_estimate = TRUE,
show_interval = TRUE,
show_density = FALSE,
show_direction = TRUE,
log_scale = FALSE,
...) {
# retrieve settings ----------------
model_attributes <- attributes(x)[!names(attributes(x)) %in% c("names", "row.names", "class")]
# no plot for anova
model_class <- attributes(x)$model_class
if (!is.null(model_class) && any(model_class %in% c("aov", "anova"))) {
insight::format_error("Plots cannot be created for Anova tables. Please fit a (linear) regression model and try again.") # nolint
}
# for GAMs, remove smooth terms
if (!is.null(x$Component) && any(x$Component == "smooth_terms")) {
x <- x[x$Component != "smooth_terms", ]
# if we only have one component left, remove Component column
if (insight::n_unique(x$Component) == 1) {
x$Component <- NULL
}
}
# user wants to plot random effects (group levels)?
if (isFALSE(model_attributes$ignore_group) &&
isTRUE(model_attributes$mixed_model) &&
!"brmsfit" %in% model_attributes$model_class) {
if (missing(show_intercept)) {
show_intercept <- TRUE
}
return(.group_level_plot(x, size_point, size_text, sort, n_columns, show_intercept, show_labels, ...))
}
# show intercept for intercept-only models
if (insight::is_model(x) && insight::is_nullmodel(x)) {
show_intercept <- TRUE
}
# Clean up column names
if (!any(grepl("Coefficient", colnames(x), fixed = TRUE))) {
colnames(x)[which.min(match(colnames(x), c("Median", "Mean", "Map", "MAP", model_attributes$coefficient_name)))] <- "Coefficient"
}
if (!any(grepl("Parameter", colnames(x), fixed = TRUE))) {
if (length(model_attributes$parameter_names) > 1L) {
collapsed_params <- apply(
do.call(
cbind,
lapply(
model_attributes$parameter_names,
function(param) paste(param, "=", x[[param]])
)
), 1,
paste,
collapse = ", "
)
x$Parameter <- collapsed_params
} else {
colnames(x)[which.min(match(colnames(x), model_attributes$parameter_names))] <- "Parameter"
}
}
# is exp?
exponentiated_coefs <- isTRUE(model_attributes$exponentiate)
y_intercept <- as.numeric(exponentiated_coefs)
# label for coefficient scale
coefficient_name <- model_attributes$coefficient_name
zi_coefficient_name <- model_attributes$zi_coefficient_name
# add coefficients and CIs?
add_values <- isTRUE(show_labels)
# ordinal model? needed for free facet scales later...
ordinal_model <- isTRUE(model_attributes$ordinal_model)
# bootstrap models handle densities differently
is_bootstrap <- isTRUE(model_attributes$bootstrap)
# bayesian (namely brms) has some special handling...
is_bayesian <- inherits(x, c("parameters_stan", "parameters_brms"))
# check column names, differs for standardized models
if ("Std_Coefficient" %in% colnames(x)) {
colnames(x)[which(colnames(x) == "Std_Coefficient")] <- "Coefficient"
}
# check if multiple CIs
if (sum(startsWith(colnames(x), "CI_low")) > 1L) {
multiple_ci <- TRUE
x <- datawizard::reshape_ci(x)
} else {
multiple_ci <- FALSE
}
# create text string for estimate and CI
x$Estimate_CI <- sprintf(
"%.2f %s",
x$Coefficient,
insight::format_ci(x$CI_low, x$CI_high, ci = NULL, digits = 2, zap_small = TRUE)
)
# do we have a measure for meta analysis (to label axis)
meta_measure <- model_attributes$measure
if (is_bayesian) {
cleaned_parameters <- model_attributes$parameter_info
if (!is.null(cleaned_parameters)) {
x <- merge(x, cleaned_parameters, sort = FALSE)
x$Parameter <- x$Cleaned_Parameter
if (all(x$Group == "")) {
x$Group <- NULL
} else {
x <- x[!startsWith(x$Group, "SD/Cor"), , drop = FALSE]
}
}
attributes(x) <- c(attributes(x), model_attributes)
}
if ("Subgroup" %in% colnames(x)) {
x$Subgroup <- factor(x$Subgroup, levels = unique(x$Subgroup))
}
# do we have prettified names?
pretty_names <- model_attributes$pretty_names
x <- .fix_facet_names(x)
if (is_bayesian && "Group" %in% colnames(x)) {
x$Effects[x$Group != ""] <- paste0(x$Effects[x$Group != ""], " (", x$Group[x$Group != ""], ")")
}
# remember components
has_effects <- "Effects" %in% colnames(x) && length(unique(x$Effects)) > 1L
has_component <- "Component" %in% colnames(x) && length(unique(x$Component)) > 1L
has_response <- "Response" %in% colnames(x) && length(unique(x$Response)) > 1L
has_subgroups <- "Subgroup" %in% colnames(x) && length(unique(x$Subgroup)) > 1L
mc <- model_attributes$model_class
cp <- model_attributes$cleaned_parameters
is_linear <- model_attributes$linear_model
is_meta <- !is.null(mc) && any(mc %in% c("rma", "rma.mv", "rma.uni", "metaplus"))
is_meta_bma <- !is.null(mc) && any(mc %in% c("meta_random", "meta_fixed", "meta_bma"))
# minor fixes for Bayesian models
if (!is.null(mc) && !is.null(cp) && any(mc %in% c("stanreg", "stanmvreg", "brmsfit")) && length(cp) == length(x$Parameter)) {
x$Parameter <- cp
}
if (isTRUE(show_density)) {
insight::check_if_installed("ggdist")
# TODO: Handle Effects and Components
# TODO: Handle meta-analysis models
if (is_bootstrap || isTRUE(is_bayesian)) {
if (is_bootstrap) {
data <- model_attributes$boot_samples
} else {
data <- as.data.frame(.retrieve_data(x))
}
# MCMC or bootstrapped models
if (is.null(data)) {
insight::format_error("Could not retrieve parameter simulations.")
}
data <- datawizard::reshape_longer(
data,
names_to = "Parameter",
rows_to = "Iteration",
values_to = "Coefficient"
)
group <- x[, "Parameter", drop = FALSE]
group$group <- factor(x$Coefficient < y_intercept, levels = c(FALSE, TRUE))
data <- merge(data, group, by = "Parameter")
if (isTRUE(exponentiated_coefs)) {
data$Coefficient <- exp(data$Coefficient)
}
density_layer <- ggdist::stat_slab(
ggplot2::aes(fill = ggplot2::after_scale(.data$color)),
size = NA, alpha = 0.2,
data = data
)
} else if (isTRUE(exponentiated_coefs)) {
density_layer <- ggdist::stat_dist_slab(
ggplot2::aes(
dist = "lnorm",
arg1 = log(.data$Coefficient),
arg2 = .data$SE / .data$Coefficient,
fill = ggplot2::after_scale(.data$color)
),
size = NA, alpha = 0.2,
data = function(x) x[x$CI == x$CI[1], ]
)
} else if (model_attributes$test_statistic == "t-statistic") {
# t-distribution confidence densities
density_layer <- ggdist::stat_dist_slab(
ggplot2::aes(
dist = "student_t",
arg1 = .data$df_error,
arg2 = .data$Coefficient,
arg3 = .data$SE,
fill = ggplot2::after_scale(.data$color)
),
size = NA, alpha = 0.2,
data = function(x) x[x$CI == x$CI[1], ]
)
} else {
# normal-approximation confidence densities
density_layer <- ggdist::stat_dist_slab(
ggplot2::aes(
dist = "norm",
arg1 = .data$Coefficient,
arg2 = .data$SE,
fill = ggplot2::after_scale(.data$color)
),
size = NA, alpha = 0.2,
data = function(x) x[x$CI == x$CI[1], ]
)
}
}
# data preparation for metafor-objects
if (is_meta) {
overall <- which(x$Parameter == "(Intercept)")
if (length(overall) == 0) overall <- which(x$Parameter == "Overall")
x$Parameter[overall] <- "Overall"
x$group <- "study"
x$group[overall] <- "Overall"
if (isTRUE(weight_points)) {
x$size_point <- sqrt(x$Weight)
x$size_point[overall] <- 8
} else {
x$size_point <- 2.5
}
x$shape <- 19
x$shape[overall] <- 18
type <- match.arg(type)
if (type == "funnel") {
if (missing(size_point)) size_point <- 2.5
return(.funnel_plot(x, size_point, meta_measure))
}
}
# data preparation for metaBMA-objects
if (is_meta_bma) {
overall <- which(x$Component == "meta")
x$group <- "study"
x$group[overall] <- "Overall"
x$size_point <- sqrt(x$Weight)
x$size_point[overall] <- 8
x$shape <- 19
x$shape[overall] <- 18
x$Component <- NULL
has_component <- FALSE
}
# if we have a model with multiple responses or response levels
# remove name of level from parameter name, as we split the plot
# by response level anyway...
if (has_response) {
for (i in rev(sort(unique(x$Response)))) {
x$Parameter <- gsub(i, "", x$Parameter)
if (!is.null(pretty_names)) {
names(pretty_names) <- gsub(i, "", names(pretty_names))
}
}
x$Parameter <- gsub("^\\:(.*)", "\\1", x$Parameter)
if (!is.null(pretty_names)) {
names(pretty_names) <- gsub("^\\:(.*)", "\\1", names(pretty_names))
}
}
# make sure components are sorted in original order, not alphabetically
if (has_effects) {
x$Effects <- factor(x$Effects, levels = unique(x$Effects))
}
if (has_component) {
x$Component <- factor(x$Component, levels = unique(x$Component))
}
if (!show_intercept && length(.is_intercept(x$Parameter)) > 0L) {
x <- x[!.is_intercept(x$Parameter), ]
if (show_density && (is_bayesian || is_bootstrap)) {
data <- data[!.is_intercept(data$Parameter), ]
density_layer$data <- data
}
}
if (isTRUE(sort) || (!is.null(sort) && sort == "ascending")) {
x$Parameter <- factor(x$Parameter, levels = rev(unique(x$Parameter)[order(x$Coefficient)]))
} else if (!is.null(sort) && sort == "descending") {
x$Parameter <- factor(x$Parameter, levels = unique(x$Parameter)[order(x$Coefficient)])
} else {
# sort coefficients as they appear in the classical summary output by default
x$Parameter <- factor(x$Parameter, levels = rev(unique(x$Parameter)))
}
if (is_meta || is_meta_bma) {
# plot setup for metafor-objects
p <- ggplot2::ggplot(x, ggplot2::aes(y = .data$Parameter, x = .data$Coefficient, color = .data$group)) +
ggplot2::geom_vline(ggplot2::aes(xintercept = y_intercept), linetype = "dotted") +
theme_modern(legend.position = "none") +
scale_color_material() +
ggplot2::guides(color = "none", size = "none", shape = "none")
if (show_density) {
# p <- p + density_layer
message(
insight::format_message("Plotting densities not yet supported for meta-analysis models.")
)
}
if (show_interval) {
# TODO: Handle NA boundaries
p <- p + ggplot2::geom_errorbar(
ggplot2::aes(xmin = .data$CI_low, xmax = .data$CI_high),
width = 0,
linewidth = size_point
)
}
if (show_estimate) {
p <- p + ggplot2::geom_point(size = x$size_point * size_point, shape = x$shape)
}
} else if (isTRUE(multiple_ci)) {
# plot setup for model parameters with multiple CIs
x$CI <- as.character(x$CI)
x$group <- factor(x$Coefficient < y_intercept, levels = c(FALSE, TRUE))
if (all(x$group == "TRUE", na.rm = TRUE)) {
color_scale <- scale_color_material(reverse = TRUE)
} else {
color_scale <- scale_color_material()
}
# should positive/negative coefficients be highlighted?
if (show_direction) {
p <- ggplot2::ggplot(x, ggplot2::aes(
y = .data$Parameter, x = .data$Coefficient,
size = rev(.data$CI), color = .data$group
))
} else {
p <- ggplot2::ggplot(x, ggplot2::aes(
y = .data$Parameter, x = .data$Coefficient,
size = rev(.data$CI)
))
}
p <- p +
ggplot2::geom_vline(ggplot2::aes(xintercept = y_intercept), linetype = "dotted") +
theme_modern(legend.position = "none") +
color_scale
if (show_density) {
p <- p + density_layer
}
if (show_interval) {
# TODO: Handle NA boundaries
p <- p + ggplot2::geom_errorbar(
ggplot2::aes(xmin = .data$CI_low, xmax = .data$CI_high),
width = 0
) +
ggplot2::scale_size_ordinal(range = c(size_point, 3 * size_point))
}
if (show_estimate) {
p <- p + ggplot2::geom_point(
size = 4 * size_point
)
}
} else {
# plot setup for regular model parameters
x$group <- factor(x$Coefficient < y_intercept, levels = c(FALSE, TRUE))
if (all(x$group == "TRUE", na.rm = TRUE)) {
color_scale <- scale_color_material(reverse = TRUE)
} else {
color_scale <- scale_color_material()
}
if (show_direction) {
p <- ggplot2::ggplot(x, ggplot2::aes(y = .data$Parameter, x = .data$Coefficient, color = .data$group)) +
ggplot2::geom_vline(ggplot2::aes(xintercept = y_intercept), linetype = "dotted") +
theme_modern(legend.position = "none") +
color_scale
} else {
p <- ggplot2::ggplot(x, ggplot2::aes(y = .data$Parameter, x = .data$Coefficient)) +
ggplot2::geom_vline(ggplot2::aes(xintercept = y_intercept), linetype = "dotted") +
theme_modern(legend.position = "none") +
color_scale
}
if (show_density) {
p <- p + density_layer
}
if (show_interval) {
# TODO: Handle NA boundaries
p <- p + ggplot2::geom_errorbar(ggplot2::aes(xmin = .data$CI_low, xmax = .data$CI_high),
width = 0,
linewidth = size_point
)
}
if (show_estimate) {
if (show_density) {
p <- p + ggplot2::geom_point(
size = 4 * size_point,
fill = "white",
shape = 21
)
} else {
p <- p + ggplot2::geom_point(size = 4 * size_point)
}
}
}
if (!is.null(pretty_names)) {
p <- p + ggplot2::scale_y_discrete(labels = pretty_names)
}
# find min/max range based on CI
min_ci <- min(x$CI_low, na.rm = TRUE)
max_ci <- max(x$CI_high, na.rm = TRUE)
# add coefficients and CIs?
if (add_values) {
# add some space to the right panel for text
space_factor <- sqrt(ceiling(diff(c(min_ci, max_ci))) / 5)
new_range <- pretty(c(min_ci, max_ci + space_factor))
# expand scale range and add numbers to the right border
if (!any(is.infinite(new_range)) && !anyNA(new_range)) {
p <- p +
geom_text(
mapping = aes(label = .data$Estimate_CI, x = Inf),
colour = "black", hjust = "inward", size = size_text
) +
xlim(c(min(new_range), max(new_range)))
}
}
# check for exponentiated estimates. in such cases,
# if the user requests a log_scale we transform the y-axis
# to log-scale, to get proper proportion of exponentiated estimates. to
# do this, we create a pretty range of values, and then look for lowest and
# largest data points that are within this range. Thereby we have the pretty
# values we can use as breaks and labels for the scale...
if (exponentiated_coefs && log_scale) {
axis_range <- 2^(-24:16)
x_low <- which.min(min_ci > axis_range) - 1
x_high <- which.max(max_ci < axis_range)
if (add_values) {
# add some space to the right panel for text
new_range <- pretty(2 * max_ci)
x_high <- which.max(max(new_range) < axis_range)
}
p <- p + scale_x_continuous(
trans = "log",
breaks = axis_range[x_low:x_high],
limits = c(axis_range[x_low], axis_range[x_high]),
labels = sprintf("%g", axis_range[x_low:x_high])
)
}
# wrap plot into facets, depending on the components
if (is.null(n_columns)) n_columns <- ifelse(sum(has_component, has_response, has_effects) > 1, 2, 1)
if (ordinal_model) {
facet_scales <- "free_x"
} else {
facet_scales <- "free"
}
axis_title_in_facet <- FALSE
if (has_component && has_response && has_effects) {
p <- p + facet_wrap(~ Response + Effects + Component, ncol = n_columns, scales = facet_scales)
} else if (has_component && has_effects) {
p <- p + facet_wrap(~ Effects + Component, ncol = n_columns, scales = facet_scales)
} else if (has_component && has_response) {
p <- p + facet_wrap(~ Response + Component, ncol = n_columns, scales = facet_scales)
} else if (has_effects && has_response) {
p <- p + facet_wrap(~ Response + Effects, ncol = n_columns, scales = facet_scales)
} else if (has_component) {
if (!is.null(zi_coefficient_name) && !is.null(coefficient_name) && zi_coefficient_name != coefficient_name) {
coef_labeller <- function(string) {
paste0(gsub("(\\(|\\))", "", string), " (", c(coefficient_name, zi_coefficient_name), ")")
}
p <- p + facet_wrap(~Component, ncol = n_columns, scales = facet_scales, labeller = as_labeller(coef_labeller))
axis_title_in_facet <- TRUE
} else {
p <- p + facet_wrap(~Component, ncol = n_columns, scales = facet_scales)
}
} else if (has_effects) {
p <- p + facet_wrap(~Effects, ncol = n_columns, scales = facet_scales)
} else if (has_response) {
p <- p + facet_wrap(~Response, ncol = n_columns, scales = facet_scales)
} else if (has_subgroups) {
suppressWarnings({
p <- p + facet_grid(Subgroup ~ ., scales = "free", space = "free")
})
}
if (length(model_attributes$parameter_names) > 1L) {
parameter_label <- "Parameters"
} else {
parameter_label <- model_attributes$parameter_names
}
if (isTRUE(is_meta)) {
measure <- .meta_measure(meta_measure)
p + ggplot2::labs(
y = "",
x = measure,
colour = "CI"
)
} else if (isTRUE(axis_title_in_facet)) {
p + ggplot2::labs(
y = parameter_label,
x = NULL,
colour = "CI"
)
} else {
p + ggplot2::labs(
y = parameter_label,
x = ifelse(is.null(coefficient_name),
ifelse(exponentiated_coefs, "Exp(Estimate)", "Estimate"), # nolint
coefficient_name
),
colour = "CI"
)
}
}
.group_level_plot <- function(x, size_point, size_text, sort, n_columns, show_intercept, show_labels, ...) {
# filter random effects
x <- x[x$Effects == "random", ]
# remove intercept?
if (isFALSE(show_intercept) && length(.is_intercept(x$Parameter)) > 0L) {
x <- x[!.is_intercept(x$Parameter), ]
}
# prepare group variable
x$Group <- paste(x$Group, x$Parameter, sep = ": ")
# define columns
if (is.null(n_columns)) {
n_columns <- 1
}
# define text size
if (is.null(size_text) || is.na(size_text)) {
size_text <- 4
}
# for now, we fix the NULL to 0. Maybe we could exp() random parameters
# for logistic regression and similar models, but currently only link-scale
y_intercept <- 0
# plot setup for regular model parameters
x$colored <- factor(x$Coefficient < y_intercept, levels = c(FALSE, TRUE))
if (all(x$colored == "TRUE")) {
color_scale <- scale_color_material(reverse = TRUE)
fill_scale <- scale_fill_material(reverse = TRUE)
} else {
color_scale <- scale_color_material()
fill_scale <- scale_fill_material()
}
# create text string for estimate and CI
x$Estimate_CI <- sprintf(
"%.2f %s",
x$Coefficient,
insight::format_ci(x$CI_low, x$CI_high, ci = NULL, digits = 2, zap_small = TRUE)
)
# handle sorting
if (isTRUE(sort) || (!is.null(sort) && sort == "ascending")) {
x$Level <- factor(x$Level, levels = rev(unique(x$Level)[order(x$Coefficient)]))
} else if (!is.null(sort) && sort == "descending") {
x$Level <- factor(x$Level, levels = unique(x$Level)[order(x$Coefficient)])
} else {
# sort coefficients as they appear in the classical summary output by default
x$Level <- factor(x$Level, levels = rev(unique(x$Level)))
}
# find min/max range based on CI
min_ci <- min(x$CI_low, na.rm = TRUE)
max_ci <- max(x$CI_high, na.rm = TRUE)
# here we check if all facets have the same scale. If so, we set the scales
# to fixed, otherwise we set them to free_y (in facet_wrap). This removes
# a redundant scale for plots with identical scales.
check_scales <- split(x$Level, x$Group)
if (isTRUE(identical(unname(check_scales[-length(check_scales)]), unname(check_scales[-1])))) {
facet_scales <- "fixed"
} else {
facet_scales <- "free_y"
}
p <- ggplot2::ggplot(
x,
ggplot2::aes(
x = .data$Coefficient,
y = .data$Level,
xmin = .data$CI_low,
xmax = .data$CI_high,
colour = .data$colored,
fill = .data$colored
)
) +
ggplot2::geom_vline(
ggplot2::aes(xintercept = y_intercept),
linetype = "dotted",
colour = "black"
) +
theme_modern(legend.position = "none") +
color_scale +
fill_scale +
ggplot2::geom_errorbarh(
height = 0,
linewidth = size_point
) +
ggplot2::geom_point(
size = 4 * size_point,
colour = "white",
shape = 21
) +
ggplot2::facet_wrap(~Group, ncol = n_columns, scales = facet_scales)
# add coefficients and CIs?
if (isTRUE(show_labels)) {
# add some space to the right panel for text
space_factor <- (n_columns^(size_text / 1.2)) * sqrt(ceiling(diff(c(min_ci, max_ci))) / 5)
new_range <- pretty(c(min_ci, max_ci + space_factor))
# expand scale range and add numbers to the right border
if (!any(is.infinite(new_range)) && !anyNA(new_range)) {
p <- p +
ggplot2::geom_text(
mapping = ggplot2::aes(label = .data$Estimate_CI, x = Inf),
colour = "black", hjust = "inward", size = size_text
) +
ggplot2::xlim(c(min(new_range), max(new_range)))
}
}
p
}
.funnel_plot <- function(x, size_point = 3, meta_measure = NULL) {
max_y <- max(pretty(max(x$SE) * 105)) / 100
measure <- .meta_measure(meta_measure)
dat_funnel <- data.frame(
se_range = datawizard::rescale(1:(nrow(x) * 10), to = c(0, max_y))
)
estimate <- x$Coefficient[x$Parameter == "Overall"]
dat_funnel$ci_low <- estimate - stats::qnorm(0.975) * dat_funnel$se_range
dat_funnel$ci_high <- estimate + stats::qnorm(0.975) * dat_funnel$se_range
d_polygon <- data.frame(
x = c(min(dat_funnel$ci_low), estimate, max(dat_funnel$ci_high)),
y = c(max(dat_funnel$se_range), 0, max(dat_funnel$se_range))
)
ggplot(x, aes(x = .data$Coefficient, y = .data$SE)) +
scale_y_reverse(expand = c(0, 0), limits = c(max_y, 0)) +
geom_polygon(data = d_polygon, aes(.data$x, .data$y), fill = "grey80", alpha = 0.3) +
geom_line(
data = dat_funnel,
mapping = aes(x = .data$ci_low, y = .data$se_range),
linetype = "dashed",
color = "grey70"
) +
geom_line(
data = dat_funnel,
mapping = aes(x = .data$ci_high, y = .data$se_range),
linetype = "dashed",
color = "grey70"
) +
theme_modern() +
geom_vline(xintercept = estimate, colour = "grey70") +
geom_point(size = size_point, colour = "#34465d") +
labs(y = "Standard Error", x = measure)
}
.meta_measure <- function(meta_measure) {
switch(meta_measure,
MD = "Raw Mean Difference",
SMDH = ,
SMD = "Standardized Mean Difference",
ROM = "Log transformed Ratio of Means",
D2ORL = ,
D2ORN = "Transformed Standardized Mean Difference",
UCOR = ,
COR = "Raw Correlation Coefficient",
ZCOR = "Z transformed Correlation Coefficient",
PHI = "Phi Coefficient",
RR = "Log Risk Ratio",
OR = "Log Odds Ratio",
RD = "Risk Difference",
AS = "Root transformed Risk Difference",
PETO = "Peto's Log Odds Ratio",
PBIT = "Standardized Mean Difference (Probit-transformed)",
OR2DL = ,
OR2DN = "Standardized Mean Difference (Odds Ratio-transformed)",
IRR = "Log Incidence Rate Ratio",
IRD = "Incidence Rate Difference",
IRSD = "Square Root transformed Incidence Rate Difference",
GEN = "Generic Estimate",
"Estimate"
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.