densityHeatmap: Use colors to represent density distribution

Description Usage Arguments Details Value Author(s) Examples

Description

Use colors to represent density distribution

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
densityHeatmap(data,
    col = rev(brewer.pal(11, "Spectral")),
    density_param = list(na.rm = TRUE),
    color_space = "LAB",
    anno = NULL,
    ylab = deparse(substitute(data)),
    title = paste0("Density heatmap of ", deparse(substitute(data))),
    range = c(-Inf, Inf),
    cluster_columns = FALSE,
    clustering_distance_columns = "euclidean",
    clustering_method_columns = "complete",
    column_dend_side = "top",
    column_dend_height = unit(10, "mm"),
    show_column_dend = FALSE,
    column_dend_gp = gpar(),
    column_dend_reorder = TRUE,
    column_names_side = c("bottom", "top"),
    show_column_names = TRUE,
    column_names_max_height = unit(4, "cm"),
    column_names_gp = gpar(fontsize = 12),
    column_order = NULL,
    ...)

Arguments

data

a matrix or a list. If it is a matrix, density will be calculated by columns.

col

a list of colors that density values are mapped to.

density_param

parameters send to density, na.rm is enforced to TRUE.

color_space

the color space in which colors are interpolated. Pass to colorRamp2.

anno

annotation for the matrix columns or the list. The value should be a vector or a data frame and colors for annotations are randomly assigned. If you want to customize the annotation colors, use a HeatmapAnnotation-class object directly.

ylab

label on y-axis in the plot

title

title of the plot

range

ranges on the y-axis. By default the range is between 1th quantile and 99th quantile of the data.

cluster_columns

whether cluster columns (here cluster by density distributions)

clustering_distance_columns

pass to Heatmap

clustering_method_columns

pass to Heatmap

column_dend_side

pass to Heatmap

column_dend_height

pass to Heatmap

show_column_dend

pass to Heatmap

column_dend_gp

pass to Heatmap

column_dend_reorder

pass to Heatmap

column_names_side

pass to Heatmap

show_column_names

pass to Heatmap

column_names_max_height

pass to Heatmap

column_names_gp

pass to Heatmap

column_order

order of columns

...

pass to draw,HeatmapList-method

Details

To visualize data distribution in a matrix or in a list, sometimes we use boxplot or beanplot. Here we use colors to map the density values and visualize distribution of values in each column (or each vector in the list) through a heatmap. It is useful if you have huge number of columns in data to visualize.

The density matrix is generated with 500 rows ranging between the maximun and minimal values in all densities. The density values in each row are linearly intepolated between the two density values at the two nearest bounds.

Value

No value is returned.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
densityHeatmap(matrix, anno = rep(c("A", "B"), each = 5))
densityHeatmap(matrix, col = c("white", "red"), anno = rep(c("A", "B"), each = 5))

ha = HeatmapAnnotation(points = anno_points(runif(10)),
    anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, anno = ha)

lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)

eilslabs/ComplexHeatmap documentation built on May 16, 2019, 1:21 a.m.