train_model: Model training

Description Usage Arguments Value Examples

View source: R/train_model.R

Description

This function train a model from the reference dataset

Usage

1
2
3
4
5
6
7
8
9
train_model(
  scale.data,
  clus,
  gene_cl.ref,
  prop = NULL,
  p.threshold = NULL,
  verbose = TRUE,
  ...
)

Arguments

scale.data

A scaled matrix of gene expressions like in the scale.data of the Seurat object. Rows are genes and columns are cells from the reference dataset.

clus

A factor with identities from the reference dataset.

gene_cl.ref

A list of cluster-specific markers. Each element of the list contains markers of a cell type. Usually only top100 ranked markers are used.

prop

The proportion of the reference data used to train the model. Default=0.5.

p.threshold

Probability threshold to consider a cell classified. Default=0.65.

verbose

Logical, controls the displaying of additional messages while running the function. Defaults to TRUE.

...

TODOELI

Value

A multinomial fitted model, as in the nnet package.

Examples

1
# TODO

elimereu/matchSCore2 documentation built on April 9, 2020, 5:41 p.m.