rm(list = ls())
library(nimble)
library(igraph)
library(coda)
library(dplyr)
library(tidyr)
library(ggplot2)
e1_approx <- nimbleFunction(
run = function(x = double(1)) {
returnType(double(1))
A <- log((0.56146 / x + 0.65) * (1 + x))
B <- x^4 * exp(7.7 * x) * (2 + x)^3.7
return((A^-7.7 + B)^-0.13)
})
NIMprospect5 <- nimbleFunction(
run = function(N = double(0),Cab = double(0),Car = double(0), Cw = double(0), Cm = double(0),
dataspec_p5 = double(2),talf = double(1),t12 = double(1),t21 = double(1), Nwl = double(0)) {
cc <- matrix(NA,nrow = 5,ncol = 1)
k <- numeric(length = Nwl)
Cbrown <- 0
cc[1,1] <- Cab / N
cc[2,1] <- Car / N
cc[3,1] <- Cbrown / N
cc[4,1] <- Cw / N
cc[5,1] <- Cm / N
k[] <- dataspec_p5[,] %*% cc[,]
trans <- (1 - k)*exp(-k) + k^2 *e1_approx(k)
trans[trans < 0] <- 0
ralf <- 1 - talf
r12 <- 1 - t12
r21 <- 1 - t21
denom <- 1 - (r21 ^ 2) * (trans ^ 2)
Ta <- talf * trans * t21 / denom
Ra <- ralf + r21 * trans * Ta
tt <- t12 * trans * t21 / denom
rr <- r12 + r21 * trans * tt
gt1 <- rr + tt >= 1
tgt1 <- tt[gt1]
Tsub <- 0*tt
Rsub <- 0*tt
r <- 0*tt
t <- 0*tt
Tsub[gt1] <- tgt1 / (tgt1 + (1 - tgt1) * (N - 1))
Rsub[gt1] <- 1 - Tsub[gt1]
inf <- rr == 0 | tt == 0
Tsub[inf] <- 0
Rsub[inf] <- 0
r <- rr[!gt1 & !inf]
t <- tt[!gt1 & !inf]
D <- sqrt((1 + r + t) * (1 + r - t) * (1 - r + t) * (1 - r - t))
r2 <- r ^ 2
t2 <- t ^ 2
va <- (1 + r2 - t2 + D) / (2 * r)
vb <- (1 - r2 + t2 + D) / (2 * t)
vbNN <- vb ^ (N - 1)
vbNN2 <- vbNN ^ 2
va2 <- va ^ 2
denomx <- va2 * vbNN2 - 1
Rsub[!gt1 & !inf] <- va * (vbNN2 - 1) / denomx
Tsub[!gt1 & !inf] <- vbNN * (va2 - 1) / denomx
denomy <- 1 - Rsub * rr
reflectance <- Ra + Ta * Rsub * tt / denomy
returnType(double(1))
if (N < 1.1 | Car < 0 | Cab < 0 | Cm <= 0 | Cw <0) {
return(-9999*(reflectance**0))
} else{
return(reflectance)
}
})
run_prospect5 <- nimbleCode({
reflectance[1:Nwl] <- NIMprospect5(Nmean,
Cabmean,
Carmean,
Cwmean,
Cmmean,
dataspec_p5[,], talf[],t12[],t21[], Nwl)
creflectance[,1] <- reflectance[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,1] ~ dnorm(creflectance[j,1], sd = Standard.Dev)
}
creflectance[,2] <- reflectance[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,2] ~ dnorm(creflectance[j,2], sd = max(0,Standard.Dev))
}
creflectance[,3] <- reflectance[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,3] ~ dnorm(creflectance[j,3], sd = max(0,Standard.Dev))
}
creflectance[,4] <- reflectance[1:Nwl]
for (j in 1:Nwl){
obs_reflectance[j,4] ~ dnorm(creflectance[j,4], sd = max(0,Standard.Dev))
}
Nmean ~ dunif(1.,5)
Cabmean ~ dunif(0,100)
Carmean ~ dunif(0,50)
Cwmean ~ dunif(0.,0.1)
Cmmean ~ dunif(0.,0.1)
Standard.Dev ~ dunif(0,1)
})
data.spectra <- readRDS("./data/All.spectra.RDS") %>% group_by(GF,Species,Ind,site) %>% mutate(ind.id = cur_group_id()) %>%
group_by(GF,Species,Ind,site,name) %>% mutate(leaf.id = cur_group_id()) %>%
mutate(value2 = value,
value = case_when(wv %in% c(500:680,800:2500) ~ value,
TRUE ~ NA_real_))
data.spectra_T_PNM <- data.spectra %>% filter(GF == "Tree",
site == "PNM") %>%
group_by(wv) %>% summarise(value = mean(value),
.groups = "drop") %>% dplyr::select(value)
data.spectra_T_FTS <- data.spectra %>% filter(GF == "Tree",
site == "FTS") %>%
group_by(wv) %>% summarise(value = mean(value),
.groups = "drop") %>% dplyr::select(value)
data.spectra_L_PNM <- data.spectra %>% filter(GF == "Liana",
site == "PNM") %>%
group_by(wv) %>% summarise(value = mean(value),
.groups = "drop") %>% dplyr::select(value)
data.spectra_L_FTS <- data.spectra %>% filter(GF == "Liana",
site == "FTS") %>%
group_by(wv) %>% summarise(value = mean(value),
.groups = "drop") %>% dplyr::select(value)
WLa <- 400
WLb <- 2500
Delta_WL <- 5
WLs <- seq(WLa,WLb,Delta_WL)
pos <- which(400:2500 %in% WLs)
Nwl <- length(pos)
Data <- list(obs_reflectance = cbind(data.spectra_T_PNM,
data.spectra_T_FTS,
data.spectra_L_PNM,
data.spectra_L_FTS))
colnames(Data$obs_reflectance) <- NULL
par(mfrow = c(1,1))
matplot(WLs,Data$obs_reflectance[,1:2],type = 'l',col = "darkgreen") # Trees
matlines(WLs,Data$obs_reflectance[,3:4],type = 'l',col = "darkblue") # Lianas
Constants <- list(Nwl = Nwl,
talf = rrtm:::p45_talf[pos],
t12 = rrtm:::p45_t12[pos],
t21 = rrtm:::p45_t21[pos],
dataspec_p5 = rrtm:::dataspec_p5[pos,1:5])
Inits <- list(Nmean = 2,
Cabmean = 40,
Carmean = 10,
Cwmean = 0.01,
Cmmean = 0.01,
Standard.Dev = 0.05)
P5model <- nimbleModel(run_prospect5,
dimensions = list(dataspec_p5 = c(Nwl,5),
talf = Nwl,
t12 = Nwl,
t21 = Nwl,
reflectance = c(Nwl),
creflectance = c(Nwl,4)),
data = Data,
constants = Constants,
debug = FALSE,
inits = Inits)
P5model$initializeInfo()
Nchains = 2
mcmc.out <- nimbleMCMC(code = P5model,
constants = Constants,
monitors = c("Nmean","Cabmean","Carmean","Cwmean","Cmmean","Standard.Dev"),
data = Data,
inits = Inits,
nburnin = 5000,
nchains = Nchains,
niter = 15000,
summary = TRUE,
WAIC = FALSE,
samplesAsCodaMCMC = TRUE)
MCMCsamples <- mcmc.out$samples
# matplot((matrix(MCMCsamples$chain1[1,19:1702],ncol = 4)),type = 'l')
param <- MCMCsamples[,1:6]
param_X = 5
plot(param[,c(0) + param_X])
# pairs(as.matrix(param[,c(0) + param_X]), pch = '.')
Nsimu <- 1000
if (Nchains == 1){
pos.simu <- sample(1:nrow(MCMCsamples),Nsimu)
param_all <- MCMCsamples[pos.simu,1:6]
} else {
pos.simu <- sample(1:nrow(MCMCsamples[[1]]),Nsimu)
param_all <- do.call(rbind,lapply(1:Nchains,function(i) MCMCsamples[[i]][pos.simu,1:6]))
}
Simu <- cbind(
# Tree, PNM
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu),
# Tree, FTS
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu),
# Liana, PNM
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu),
# Liana, FTS
matrix(unlist(lapply(1:Nsimu,function(ileaf){
rrtm::prospect5(N = param_all[ileaf,5],
Cab = param_all[ileaf,1],
Car = param_all[ileaf,2],
Cbrown = 0,
Cw = param_all[ileaf,4],
Cm = param_all[ileaf,3])[["reflectance"]][pos]})),ncol = Nsimu))
par(mfrow = c(2,2))
ileaf = 1:1000
hist(param_all[ileaf,0 + param_X]) # Tree, PNM
hist(param_all[ileaf,0 + param_X]) # Tree, FTS
hist(param_all[ileaf,0 + param_X]) # Liana, PNM
hist(param_all[ileaf,0 + param_X]) # Liana, FTS
# PNM
par(mfrow = c(1,2))
matplot(WLs,Simu[,1:Nsimu],type = 'l',col = "darkgreen",ylim = c(0,0.6))
matlines(WLs,Simu[,2*Nsimu + (1:Nsimu)],type = 'l',col = "darkblue")
matlines(WLs,Data$obs_reflectance[,c(1,3)],type = 'l',col = c("black","black"),lwd = 2,lty = c(1,2))
# FTS
matplot(WLs,Simu[,Nsimu + (1:Nsimu)],type = 'l',col = "darkgreen",ylim = c(0,0.6))
matlines(WLs,Simu[,3*Nsimu + (1:Nsimu)],type = 'l',col = "darkblue")
matlines(WLs,Data$obs_reflectance[,c(2,4)],type = 'l',col = c("black","black"),lwd = 2,lty = c(1,2))
df_l <- data.frame(mcmc.out$samples$chain1) %>% rename(N = Nmean,
Cab = Cabmean,
Car = Carmean,
Cw = Cwmean,
Cm = Cmmean) %>% dplyr::select(c("N","Cab","Car","Cw","Cm","Standard.Dev")) %>%
pivot_longer(cols = c("N","Cab","Car","Cw","Cm","Standard.Dev"),
names_to = "param",
values_to = "value")
vlines <- bind_rows(list(df_l %>% filter(param %in% c("N","Cab","Car","Cw","Cm")) %>% group_by(param) %>% summarise(m = mean(value),
.groups = "keep")))
ggplot(df_l %>% filter(param %in% c("N","Cab","Car","Cw","Cm")),
aes(value)) +
geom_histogram(aes(y= ..density..),bins = 60, alpha = 0.4, color = "darkgrey") +
geom_vline(data = vlines,
aes(xintercept = m)) +
facet_wrap(~param, scales = "free",nrow = 3) +
theme_bw()
param.names <- c("Cab","Car","Cm","Cw","N","Standard.Dev")
Nparams <- length(param.names)
df.param.all <- data.frame()
for (iparam in seq(1,Nparams)){
df.param <- bind_rows(list(data.frame(GF = "Tree",
site = "PNM",
param = param.names[iparam],
value = param_all[,iparam]),
data.frame(GF = "Tree",
site = "FTS",
param = param.names[iparam],
value = param_all[,iparam]),
data.frame(GF = "Liana",
site = "PNM",
param = param.names[iparam],
value = param_all[,iparam]),
data.frame(GF = "Liana",
site = "FTS",
param = param.names[iparam],
value = param_all[,iparam])
))
df.param.all <- bind_rows(list(df.param.all,
df.param))
}
ggplot(data = df.param.all) +
geom_density_ridges(aes(x = value, y = site,fill = GF),alpha = .8, color = NA) +
facet_wrap(~ param,scale = "free") +
theme_bw()
ggplot(data = df.param.all %>% filter(!(param == c("Standard.Dev")))) +
geom_density_ridges(aes(x = value, y = site,fill = GF),alpha = .8, color = NA) +
facet_wrap(~ param,scale = "free", nrow = 1) +
theme_bw()
ggplot(data = df_l %>% mutate(type = gsub(".*_","",param),
effect = gsub("\\_.*","",param)) %>%
mutate(effect = case_when(effect %in% c("alpha","beta","gamma") ~ effect,
TRUE ~ "base"),
type = case_when(type %in% c("N","Cab","Car","Cm","Cw") ~ type,
TRUE ~ "Standard.Dev"))) +
geom_density_ridges(aes(x = value, y = 0,fill = effect),alpha = .8, color = NA) +
facet_wrap(~ type,scale = "free") +
geom_vline(xintercept = 0, linetype = 2) +
theme_bw()
df.data <- bind_rows(list(
data.frame(
GF = "Tree",
site = "PNM",
wv = WLs,
R = Data$obs_reflectance[, 1]
),
data.frame(
GF = "Tree",
site = "FTS",
wv = WLs,
R = Data$obs_reflectance[, 2]
),
data.frame(
GF = "Liana",
site = "PNM",
wv = WLs,
R = Data$obs_reflectance[, 3]
),
data.frame(
GF = "Liana",
site = "FTS",
wv = WLs,
R = Data$obs_reflectance[, 4]
)
)) %>% mutate(GF_site = paste(GF, site, sep = "_")) %>%
dplyr::select(-c("GF", "site")) %>%
pivot_wider(values_from = "R",
names_from = "GF_site") %>%
mutate(
site.effect = Tree_FTS - Tree_PNM,
liana.effect = Liana_PNM - Tree_PNM,
site.liana.effect = Liana_FTS - Tree_PNM
) %>%
pivot_longer(cols = c("Tree_PNM","Tree_FTS", "Liana_PNM", "Liana_FTS",
"site.effect","liana.effect","site.liana.effect")) %>%
mutate(type = "Data")
meanSimu <- cbind(rowMeans(Simu[,1:1000]),rowMeans(Simu[,1001:2000]),rowMeans(Simu[,2001:3000]),rowMeans(Simu[,3001:4000]))
df.Simu <- bind_rows(list(
data.frame(
GF = "Tree",
site = "PNM",
wv = WLs,
R = meanSimu[,1]
),
data.frame(
GF = "Tree",
site = "FTS",
wv = WLs,
R = meanSimu[,2]
),
data.frame(
GF = "Liana",
site = "PNM",
wv = WLs,
R = meanSimu[,3]
),
data.frame(
GF = "Liana",
site = "FTS",
wv = WLs,
R = meanSimu[,4]
)
)) %>% mutate(GF_site = paste(GF, site, sep = "_")) %>%
dplyr::select(-c("GF", "site")) %>%
pivot_wider(values_from = "R",
names_from = "GF_site") %>%
mutate(
site.effect = Tree_FTS - Tree_PNM,
liana.effect = Liana_PNM - Tree_PNM,
site.liana.effect = Liana_FTS - Tree_PNM
) %>%
pivot_longer(cols = c("Tree_PNM","Tree_FTS", "Liana_PNM", "Liana_FTS",
"site.effect","liana.effect","site.liana.effect")) %>%
mutate(type = "Mod")
df.all <- bind_rows(list(df.data,
df.Simu)) %>% pivot_wider(values_from = "value",
names_from = "type")
ggplot(data = df.all %>% filter(name %in% c("Liana_FTS","Liana_PNM",
"Tree_FTS","Tree_PNM")))+
geom_point(aes(x = Data,y = Mod)) +
facet_wrap(~name,scales = "free", nrow = 2) +
geom_abline(slope = 1, intercept = 0, linetype = 2) +
theme_bw()
df.all %>% filter(name %in% c("Liana_FTS","Liana_PNM",
"Tree_FTS","Tree_PNM")) %>% group_by(name) %>% summarise(m =mean(abs(Data),na.rm = TRUE),
r2 = summary(lm(formula = Data ~ Mod))[["adj.r.squared"]],
RMSE = sqrt(c(crossprod(lm(formula = Data ~ Mod)[["residuals"]]))/length(Data[!is.na(Data)])),
.groups = "keep") %>%
mutate(RMSE.rel = RMSE/m)
ggplot(data = df.all %>% filter(!(name %in% c("Liana_FTS","Liana_PNM",
"Tree_FTS","Tree_PNM"))))+
geom_point(aes(x = Data,y = Mod)) +
facet_wrap(~name,scales = "free", nrow = 1) +
geom_abline(slope = 1, intercept = 0, linetype = 2) +
theme_bw()
df.all %>% filter(!(name %in% c("Liana_FTS","Liana_PNM",
"Tree_FTS","Tree_PNM"))) %>% group_by(name) %>% summarise(m =mean(abs(Data),na.rm = TRUE),
r2 = summary(lm(formula = Data ~ Mod))[["adj.r.squared"]],
RMSE = sqrt(c(crossprod(lm(formula = Data ~ Mod)[["residuals"]]))/length(Data[!is.na(Data)])),
.groups = "keep") %>%
mutate(RMSE.rel = RMSE/m)
df.all %>% filter((name %in% c("Liana_FTS","Liana_PNM",
"Tree_FTS","Tree_PNM"))) %>% summarise(m =mean(abs(Data),na.rm = TRUE),
r2 = summary(lm(formula = Data ~ Mod))[["adj.r.squared"]],
RMSE = sqrt(c(crossprod(lm(formula = Data ~ Mod)[["residuals"]]))/length(Data[!is.na(Data)])),
.groups = "keep") %>%
mutate(RMSE.rel = RMSE/m)
# m r2 RMSE RMSE.rel
# <dbl> <dbl> <dbl> <dbl>
# 1 0.269 0.987 0.0189 0.0701
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.