#' plot_PDP
#'
#' @description
#' Plot a 1D or 2D Partial Dependence Plot (PDP)
#'
#' @param data dataframe - Data to use for the predictions. Should have same columns as training data (can be training data)
#' @param model model object - Model to produce PDP from
#' @param explain_col string - Vector of length 1 for 1D plot or length 2 for 2D plot. This is the factor(s) to explain in the model. The columns must be in \code{data}
#' @param weight numeric - Vector of length \code{nrow(data)} contains weightings, if NULL even weighting is used
#' @param n_bins numeric - Vector of length 1 for 1D plot and 1 or 2 for 2D plots. This is the number of points to calculate the PDP for
#' @param use_plotly Optional: boolean - If TRUE plotly object is returned else ggplot2 object
#'
#' @seealso plot_ALE
#'
#' @return plotly/ggplot object of PDP plot
#' @export
#'
#' @examples
#'
#' data <- data.frame(x1=runif(100, 0, 25), x2=runif(100, 0, 25)) %>%
#' dplyr::mutate(target=x1^2 * 0.01 + x2 + rnorm(n(),sd=5))
#'
#' #LM
#' model_lm <- glm(target ~ poly(x1, 2) + x2, data=data)
#'
#' plot_PDP(data, model_lm, explain_col="x1", n_bins=5)
#' plot_PDP(data, model_lm, explain_col="x2", n_bins=5)
#' plot_PDP(data, model_lm, explain_col=c("x1","x2"), n_bins=5)
#'
#' #GLM
#' model_glm <- glm(target ~ poly(x1, 2) + x2, data=data)
#'
#' plot_PDP(data, model_glm, explain_col="x1", n_bins=5)
#' plot_PDP(data, model_glm, explain_col="x2", n_bins=5)
#' plot_PDP(data, model_glm, explain_col=c("x1","x2"), n_bins=5)
#'
#' #GBM
#' model_gbm <- xgboost(data = as.matrix(data[,which(!(names(data)=="target"))]), label=data[["target"]], nrounds=20, verbose = 0)
#' plot_PDP(data[,which(!(names(data)=="target"))], model_gbm, explain_col="x1", n_bins=10)
#' plot_PDP(data[,which(!(names(data)=="target"))], model_gbm, explain_col="x2", n_bins=10)
#' plot_PDP(data[,which(!(names(data)=="target"))], model_gbm, explain_col=c("x1","x2"), n_bins=10)
#'
plot_PDP <- function(data, model, explain_col, weight=NULL, n_bins=10, use_plotly=TRUE){
# Use no weighting if none given
if (is.null(weight)){
weight <- rep(1, nrow(data))
}else{
checkmate::assert_numeric(weight, len=nrow(data), lower=0)
}
#Check inputs
checkmate::assert_data_frame(data)
checkmate::assert_character(explain_col, min.len = 1, max.len = 2)
checkmate::assert_true(all(explain_col %in% names(data)))
checkmate::assert_integerish(n_bins, min.len = 1, max.len = 2)
checkmate::assert_logical(use_plotly, len=1)
if (length(explain_col)==1){ # 1D Plot
checkmate::assert_integerish(n_bins, len=1)
plot.data <- plotting_numerical_buckets(var_to_band=data[[explain_col]], n_bins=n_bins, weight=weight, include_outliers=TRUE)
# For each bin
for (ii in 1:nrow(plot.data)){
if(ii==1){
data_ii <- data
}
data_ii[[explain_col]] <- plot.data$center[ii] # Set the factor to the bucket center
# Get average prediction
if(any(class(model)=="xgb.Booster")){
plot.data[ii,"mean_pred"] <- sum(predict(object=model, newdata=data_ii %>% sapply(as.numeric) %>% as.matrix()) %>% as.vector() * weight) / sum(weight)
}else{
plot.data[ii,"mean_pred"] <- sum(predict(object=model, newdata=data_ii) %>% as.vector() * weight) / sum(weight)
}
# Get weight of bucket
if(ii!=nrow(plot.data)){
plot.data[ii,"weight"] <- sum(weight[data[[explain_col]] >= plot.data[ii,"lower"] & data[[explain_col]] < plot.data[ii,"upper"]])
}
else{
plot.data[ii,"weight"] <- sum(weight[data[[explain_col]] >= plot.data[ii,"lower"] & data[[explain_col]] <= plot.data[ii,"upper"]])
}
}
# Plot PDP
if (use_plotly==TRUE){
plotly::plot_ly(data=plot.data) %>%
plotly::add_trace(y=~mean_pred, x=~center, type="scatter", mode="lines+markers", name=explain_col) %>%
plotly::add_trace(y=~weight, x=~center, type="bar", name="Exposure", yaxis="y2", opacity=0.2) %>%
plotly::layout(
title = paste0("PDP for factor ", explain_col),
yaxis = list(title="Mean prediction"),
yaxis2 = list(overlaying = "y", side = "right", title="Exposure", showgrid = FALSE, rangemode="nonnegative"),
xaxis = list(title=explain_col)
) %>%
return()
}else{
scale= mean(plot.data$mean_pred) / mean(plot.data$weight)
out_plot <- ggplot2::ggplot(data=plot.data) +
ggplot2::geom_line(ggplot2::aes(y=mean_pred, x=center, color=explain_col)) +
ggplot2::geom_point(ggplot2::aes(y=mean_pred, x=center, color=explain_col)) +
ggplot2::geom_rect(ggplot2::aes(ymax=weight * scale, ymin=0, xmin=center-(width/2), xmax=center+(width/2), fill="Exposure"), alpha=0.2) +
ggplot2::scale_y_continuous(name="Mean prediction", sec.axis=ggplot2::sec_axis(~.*scale ,name="Exposure")) +
ggplot2::labs(title = paste0("PDP for factor ", explain_col), x=explain_col)
return(out_plot)
}
}else if (length(explain_col)==2){ # 2D Plot
#Check explain columns aren't the same
checkmate::assert_true(explain_col[1]!=explain_col[2])
checkmate::assert_numeric(n_bins, min.len = 1, max.len = 2)
n_bins.x = ifelse(length(n_bins)==1, n_bins, n_bins[1])
n_bins.y = ifelse(length(n_bins)==1, n_bins, n_bins[2])
plot.data.x <- plotting_numerical_buckets(var_to_band=data[[explain_col[1]]], n_bins=n_bins.x, weight=weight, include_outliers=FALSE)
plot.data.y <- plotting_numerical_buckets(var_to_band=data[[explain_col[2]]], n_bins=n_bins.y, weight=weight, include_outliers=FALSE)
plot.data <- dplyr::full_join(plot.data.x %>% dplyr::select(lower, upper, center, width) %>% dplyr::mutate(join=1),
plot.data.y %>% dplyr::select(lower, upper, center, width) %>% dplyr::mutate(join=1),
by="join",
suffix=c(".x", ".y")) %>%
dplyr::select(-join)
# For each 2D bin
for (ii in 1:nrow(plot.data)){
if(ii==1){
data_ii <- data
}
data_ii[[explain_col[[1]]]] <- plot.data[[ii,"center.x"]] # Set the factor to the bucket center
data_ii[[explain_col[[2]]]] <- plot.data[[ii,"center.y"]] # Set the factor to the bucket center
#Get predictions
if(any(class(model)=="xgb.Booster")){
plot.data[ii,"mean_pred"] <- sum(predict(object=model, newdata=as.matrix(data_ii)) %>% as.vector() * weight) / sum(weight)
}else{
plot.data[ii,"mean_pred"] <- sum(predict(object=model, newdata=data_ii) %>% as.vector() * weight) / sum(weight)
}
}
# Plot PDP
if (use_plotly==TRUE){
plotly::plot_ly(data=plot.data) %>%
#add_trace(y=~center.y, x=~center.x, type="contour", z=~mean_pred, contours = list(showlabels = TRUE)) %>%
plotly::add_trace(x=~center.x, y=~center.y, type="heatmap", z=~mean_pred) %>%
plotly::layout(
title = paste0("PDP for factors ", explain_col[1], " & ", explain_col[2]),
xaxis = list(title=explain_col[1]),
yaxis = list(title=explain_col[2])
) %>%
plotly::colorbar(title = "Mean prediction") %>%
return()
}else{
out_plot <- ggplot2::ggplot(data=plot.data)+
ggplot2::geom_tile(ggplot2::aes(x=center.x, y=center.y, fill=mean_pred)) +
ggplot2::labs(title=paste0("PDP for factors ", explain_col[1], " & ", explain_col[2]),
x=explain_col[1],
y=explain_col[2],
fill="Mean prediction")
return(out_plot)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.