context("testing cpop")
##dyn.load("coeff.updateR.so")
########
# CPOP algorithm for finding the best segmentation of data for a change-in-slope model
#
# best is defined in terms of minimising
#
# sum_{i=1}^n1/(sigma_i^2) (y_i-f_i)^2+m*beta -(*)
#
# where y_i are data, f_i is the fitted mean at point i; m is the number of changepoints
# and we consider all continuous piecewise-linear functions for f. Changepoints thus
# correspond to changes in slope.
#
# Input is y -- vector of data; and beta a positive constant that penalises additional
# changes; sigsquared -- an estimate of residual variance
#
# useCprune determine whether (faster) C code is used within the algorithm;
# printinteration determines whether updates of progress are printed.
#
# Output: list of minimum value of (*) together with the inferred changepoints. This list will include 0 and n as first/last entries.
#
########
####CHANGE-- INPUT x AS LIST OF LOCATIONS
####sigsquared an vary with x
CPOP.uneven.var<-function(y,x,beta,sigsquared=1,useCprune=FALSE,printiteration=FALSE){
if(useCprune) dyn.load("prune2R.so")
n<-length(y)
if(length(sigsquared)!=n) sigsquared=rep(sigsquared[1],n)
S<-0
for(i in 1:n){
S[i+1]<-S[i]+y[i]/sigsquared[i]
}
SS<-0
for(i in 1:n){
SS[i+1]<-SS[i]+y[i]^2/sigsquared[i]
} ##preprocessing
####ADDITIONAL PRE-PREOCESSING FOR UNEVEN COMPONENTS
SX<-0
for(i in 1:n){
SX[i+1]<-SX[i]+x[i]/sigsquared[i]
}
SX2<-0
for(i in 1:n){
SX2[i+1]<-SX2[i]+x[i]^2/sigsquared[i]
}
SXY<-0
for(i in 1:n){
SXY[i+1]<-SXY[i]+x[i]*y[i]/sigsquared[i]
}
SP<-0
for(i in 1:n){
SP[i+1]<-SP[i]+1/sigsquared[i]
}
x0=c(2*x[1]-x[2],x)
coeffs<-matrix(0,ncol=5,nrow=1) #first two columns are current time point and most recent changepoint, final three are coefficients for cost
coeffs[1,5]<--beta
coeffs[1,1:2]<-c(0,0)
CPvec<-c("0") #vector storing changepoint values, not used in code but required as an output
lencoo<-c()
lencur<-c()
######
## code minimise 1/(2sigma^2)*RSS rather than RSS/sigma^2
## hence need to have sigma^2
####
sigsquared=sigsquared/2
for(taustar in 1:n){
new.CPvec<-paste(CPvec,taustar,sep=",")
##update coefficients --THIS HAS BEEN CHANGED FROM CPOP CODE
##CURRENTLY CHANGE ONLY IN R CODE VERSION
#if(useC==FALSE){
new.coeffs=coeff.update.uneven.var(coeffs,S,SXY,SS,SX,SX2,SP,x0,taustar,beta)
#} else if(useC==TRUE){
# new.coeffs=coeff.update.c(coeffs,S,SJ,SS,taustar,sigsquared,beta)
#} else{stop("useC must be a TRUE or FALSE value")
#}
# if(taustar==2){browser()}
if(taustar!=n){ #skip pruning on last step
###################################################pruning bit##########
if(length(new.coeffs[,1])>1){
##added###
#keep1=prune1(new.coeffs,taustar) ##first pruning
keep1=1:length(new.coeffs[,1])
new.coeffs.p=new.coeffs[keep1,]
new.CPvec=new.CPvec[keep1]
###########
if(sum(keep1)>1){
if(useCprune==F){
keep2=prune2b(new.coeffs.p) }##find set of functions to keep
else if(useCprune==T){
keep2=prune2.c(new.coeffs.p) }
else{stop("useCprune must be a TRUE or FALSE value")
}
new.coeffs.p=new.coeffs.p[keep2,]
new.CPvec=new.CPvec[keep2]
}
}else{
new.coeffs.p=new.coeffs
}
####PELT PRUNE############################
if(taustar>2){
keeppelt=peltprune(new.coeffs,beta)
coeffs<-coeffs[keeppelt,]
CPvec<-CPvec[keeppelt]
}
##########################################
}
else{new.coeffs.p<-new.coeffs}
CPvec<-c(CPvec,new.CPvec) #prunes both CPvec vector and coeffs matrix
coeffs<-rbind(coeffs,new.coeffs.p)
lencoo[taustar]<-length(coeffs[,1])
lencur[taustar]<-length(new.coeffs.p)/5
#####################################################
if(printiteration==TRUE){
if(taustar%%100==0) cat("Iteration ",taustar,"Functions-stored",lencoo[taustar],lencur[taustar],"\n")}
else if(printiteration!=FALSE){stop("printiteration must be a TRUE or FALSE value")}
}
coeffscurr<-coeffs[coeffs[,1]==n,] #matrix of coeffs for end time t=n
if(!is.matrix(coeffscurr)){coeffscurr<-t(as.matrix(coeffscurr))} #makes sure coeffscurr is in the right format
ttemp<-coeffscurr[,5]-(coeffscurr[,4]^2)/(4*coeffscurr[,3])
mttemp<-min(ttemp)
num<-which(ttemp==mttemp)
CPveccurr<-CPvec[coeffs[,1]==n]
CPS<-eval(parse(text=paste("c(",CPveccurr[num],")")))
#####
##code has an additional additive factor of (n/2) * log(2*pi*sigma^2) in cost
## hence we remove this so mttemp is the minimum of the correct cost
#####
#mttemp=mttemp - (n/2)*log(2*pi*sigsquared)
return(list(min.cost=mttemp,changepoints=CPS)) #return min cost and changepoints
}
########################################################################################
###################### coeff update#####################################################
### NEW VERSION -- UNEVEN LOCATIONS AND VARYING MEAN
###avoids loop
########################################################################################
coeff.update.uneven.var=function(coeffs,S,SXY,SS,SX,SX2,SP,x0,taustar,beta){
coeff.new<-coeffs
coeff.new[,2]=coeffs[,1]
coeff.new[,1]<-taustar
sstar<-coeff.new[,2]
Xs<-x0[sstar+1]
Xt<-x0[taustar+1]
seglen=Xt-Xs
n.obs=taustar-sstar
A<-(SX2[taustar+1]-SX2[sstar+1]-2*Xs*(SX[taustar+1]-SX[sstar+1])+(SP[taustar+1]-SP[sstar+1])*Xs^2)/(seglen^2)
B<- 2*( (Xt+Xs)*(SX[taustar+1]-SX[sstar+1])-(SP[taustar+1]-SP[sstar+1])*Xt*Xs-(SX2[taustar+1]-SX2[sstar+1]))/(seglen^2)
C<-(-2)/(seglen)*(SXY[taustar+1]-SXY[sstar+1]-Xs*(S[taustar+1]-S[sstar+1]))
D<- (SS[taustar+1]-SS[sstar+1])
E<-(-2)/(seglen)*(Xt*(S[taustar+1]-S[sstar+1])-(SXY[taustar+1]-SXY[sstar+1]))
FF<-(SX2[taustar+1]-SX2[sstar+1]-2*Xt*(SX[taustar+1]-SX[sstar+1])+(SP[taustar+1]-SP[sstar+1])*Xt^2)/(seglen^2)
m=length(sstar)
ind1=(1:m)[FF==0 & coeffs[,3]==0 & B==0]
ind2=(1:m)[FF==0 & coeffs[,3]==0 & B!=0]
ind3=(1:m)[!(FF==0 & coeffs[,3]==0)]
if(length(ind1)>0){
coeff.new[ind1,5]<-coeffs[ind1,5]+D[ind1]+beta
coeff.new[ind1,4]<-C[ind1]
coeff.new[ind1,3]<-A[ind1]
}
if(length(ind2)>0){
coeff.new[ind2,5]<-coeffs[ind2,5]+(-E[ind2]-coeffs[ind2,4])/B[ind2]+beta
coeff.new[ind2,4]<-0
coeff.new[ind2,3]<-0
}
if(length(ind3)>0){
coeff.new[ind3,5]<-coeffs[ind3,5]+D[ind3]-(coeffs[ind3,4]+E[ind3])^2/(4*(coeffs[ind3,3]+FF[ind3]))+beta
coeff.new[ind3,4]<-C[ind3]-(coeffs[ind3,4]+E[ind3])*B[ind3]/(2*(coeffs[ind3,3]+FF[ind3]))
coeff.new[ind3,3]<-A[ind3]-(B[ind3]^2)/(4*(coeffs[ind3,3]+FF[ind3]))
}
return(coeff.new)
}
##########################################################################################################
##second pruning
## again x is matrix of quadratics
##version to avoid nested loops
##########################################################################################################
prune2b=function(x){
Sets<-list()
n=length(x[,1])
vec=(1:n)
tcurr= -Inf
whichfun<-which(x[,3]==min(x[,3])) #which element of vec gives min value at -Infinity--smallest theta^2 coeff; then largest theta coeff; then smallest constant
whichfun<-whichfun[which(x[whichfun,4]==max(x[whichfun,4]))]
whichfun<-whichfun[which(x[whichfun,5]==min(x[whichfun,5]))]
Sets[[whichfun]]<-c(tcurr)
diffcoeffs=matrix(NA,nrow=n,ncol=3)
intercepts=rep(NA,n)
disc=rep(NA,n)
while(length(vec)>1){ #while functions being considered is bigger than 1
intercepts[1:n]<-NA
diffcoeffs[1:(length(vec)),]<-t(t(x[vec,3:5])-x[whichfun,3:5]) #difference between coeffs at i and current function
disc[1:(length(vec))]<-diffcoeffs[1:(length(vec)),2]^2-4*diffcoeffs[1:(length(vec)),1]*diffcoeffs[1:(length(vec)),3] #discriminent of difference quad
ind1=(1:length(vec))[disc[1:(length(vec))]>0 & diffcoeffs[1:(length(vec)),1]==0] ##disc>0 for quadratic to cross.
ind2=(1:length(vec))[disc[1:(length(vec))]>0 & diffcoeffs[1:(length(vec)),1]!=0] ##disc>0 for quadratic to cross.
if(length(ind1)>0){
r1= - diffcoeffs[ind1,3]/diffcoeffs[ind1,2]
if(sum(r1>tcurr)>0){
intercepts[ind1[r1>tcurr]]= r1[r1>tcurr]
}
}
if(length(ind2)>0){
r1=(-diffcoeffs[ind2,2]-sign(diffcoeffs[ind2,1])*sqrt(disc[ind2]))/(2*diffcoeffs[ind2,1])
r2=(-diffcoeffs[ind2,2]+sign(diffcoeffs[ind2,1])*sqrt(disc[ind2]))/(2*diffcoeffs[ind2,1])
##only want roots if > tcurr
if(sum(r1>tcurr)>0){
intercepts[ind2[r1>tcurr]]=r1[r1>tcurr]
}
if(sum(r1<=tcurr & r2>tcurr)>0){
intercepts[ind2[r1<=tcurr & r2>tcurr]]=r2[r1<=tcurr & r2>tcurr]
}
}
loggy<-!is.na(intercepts)
loggy[vec==whichfun]<-T
if(!sum(!is.na(intercepts))==0){ #if at least one intercept value is not na
tcurr<-min(intercepts,na.rm=T) #change tcurr to first intercept
whichfunnew<-vec[which(intercepts==tcurr)[1]] #whichfunnew is set as value which first intercept occurs
Sets[[whichfun]]<-c(Sets[[whichfun]],tcurr) #add intercept to current function opt interval (to close it)
if(whichfunnew>length(Sets)){Sets[[whichfunnew]]<-c(tcurr)}else{
Sets[[whichfunnew]]<-c(Sets[[whichfunnew]],tcurr)} #add intercept to new fucntion interval (opening it)
whichfun<-whichfunnew #change current function to new function
}
vec<-vec[loggy[(1:length(vec))]]
}
Sets[[whichfun]]<-c(Sets[[whichfun]],Inf)
output1 <- do.call(rbind,lapply(Sets,length))
return(which(output1[,1]!=0))
}
###########################################################################################################
###################################PELT pruning function###################################################
###########################################################################################################
peltprune=function(x,beta){
minx<-x[,5]-x[,4]^2/(4*x[,3])
return(which(minx<=(min(minx)+2*beta)))
}
###########################################################################################################
##################coverts null to na#######################################################################
###########################################################################################################
null2na<-function(vec){
if(is.null(vec)){vec<-NA}
return(vec)
}
################end#######################
#######FUNCTION FOR FITTING
### Input y-data; x- locations; out -- output from CPOP; and sigsquared -- vector of variances
###
CPOP.fit=function(y,x,out.changepoints,sigsquared){
n=length(y)
if(length(sigsquared)!=n) sigsquared=rep(sigsquared[1],n)
p=length(out.changepoints)
W=diag(sigsquared^-1)
X=matrix(NA,nrow=n,ncol=p)
X[,1]=1
X[,2]=x-x[1]
if(p>2){
for(i in 2:(p-1)){
X[,i+1]=c(rep(0,out.changepoints[i]-1),x[(out.changepoints[i]):n]-x[out.changepoints[i]])
}
}
XTX=t(X)%*%W%*%X
beta=as.vector(solve(XTX)%*%t(X)%*%W%*%y)
fit=X%*%beta
residuals=y-fit
return(list(fit=fit,residuals=residuals,X=X,pars=beta))
}
##### function to simulate mean
## x data locations
## mu(x)=sum_{i=1}^K a_k max(x-tau_k,0)
##where changepoints is the vector tau_{1:K}
## and slope is the vetor of a_{1:K} -- the change in slope
change.in.slope.mean=function(x,changepoints,change.slope){
K=length(changepoints)
mu=rep(0,length(x))
for(k in 1:K) mu=mu+change.slope[k]*pmax(x-changepoints[k],0)
return(mu)
}
test_that("test that cpop predicts the correct RSS and changepoints using default parameter values",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y<-mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
fit=CPOP.fit(y,x,out$changepoints,1)
RSS<-sum(fit$residuals^2)
cpop.res<-cpop(y,x)
cpop.RSS<-sum(fitted(cpop.res)$RSS)
expect_equal(cpop.RSS,RSS)
expect_equal(changepoints(cpop.res)$location,x[out$changepoints[2:4]])
})
test_that("test 1 - test that cpop predicts the correct RSS and changepoints using default parameter values",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y<-mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
fit=CPOP.fit(y,x,out$changepoints,1)
RSS<-sum(fit$residuals^2)
cpop.res<-cpop(y,x)
cpop.RSS<-sum(fitted(cpop.res)$RSS)
expect_equal(cpop.RSS,RSS)
expect_equal(changepoints(cpop.res)$location,x[out$changepoints[2:4]])
})
test_that("test 2 - test that cpop predicts the correct RSS and changepoints using non default beta value",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2,sigsquared=1)
fit=CPOP.fit(y,x,out$changepoints,1)
RSS<-sum(fit$residuals^2)
cpop.res<-cpop(y,x,beta=2,sd=1)
cpop.RSS<-sum(fitted(cpop.res)$RSS)
expect_equal(cpop.RSS,RSS)
expect_equal(changepoints(cpop.res)$location,x[out$changepoints[2:24]])
})
test_that("test 3 - test that fitted predicts the correct RSS",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,1)
#CHECK
# RSS<-sum(fit$residuals^2)+2*log(length(x))*(length(out$changepoints)-2)
RSS<-sum(fit$residuals^2)
cpop.res<-cpop(y,x,sd=1)
expect_equal(sum(fitted(cpop.res)$RSS),RSS)
})
test_that("test 4 - test that fitted predicts the correct RSS",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,1)
#CHECK
# RSS<-sum(fit$residuals^2)+2*log(length(x))*(length(out$changepoints)-2)
RSS<-sum(fit$residuals^2)
cpop.res<-cpop(y,x,sd=1)
expect_equal(sum(fitted(cpop.res)$RSS),RSS)
})
test_that("test 5 - test that results from fitted can be used to calculate the cost correctly",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,1)
#CHECK
cost<-sum(fit$residuals^2)+2*log(length(x))*(length(out$changepoints)-2)
cpop.res<-cpop(y,x,sd=1)
expect_equal(cost(cpop.res),cost)
})
test_that("test 6 - test default value of sd",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=1)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,1)
#CHECK
cost<-sum(fit$residuals^2)+2*log(length(x))*(length(out$changepoints)-2)
cpop.res<-cpop(y,x,sd=1)
expect_equal(cost(cpop.res),cost)
})
test_that("test 7 - test non default values of sd",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=2)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,2)
#CHECK
cost<-sum(fit$residuals^2/2)+2*log(length(x))*(length(out$changepoints)-2)
cpop.res<-cpop(y,x,sd=sqrt(2))
expect_equal(cost(cpop.res),cost)
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
mu=change.in.slope.mean(x,changepoints,change.slope)
y=mu+rnorm(200)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=4)
out$changepoints
#[1] 0 22 52 95 200
out$min.cost
#[1] 199.0554
fit=CPOP.fit(y,x,out$changepoints,4)
#CHECK
cost<-sum(fit$residuals^2/4)+2*log(length(x))*(length(out$changepoints)-2)
cpop.res<-cpop(y,x,sd=2)
expect_equal(cost(cpop.res),cost)
})
test_that("test 8 - test for the effects of setting minseglen greater than shortest distance between changepoints",
{
set.seed(1)
changepoints=c(0,25,50,100)
change.slope=c(0.2,-0.3,0.2,-0.1)
x=1:200
y<-simchangeslope(x,changepoints,change.slope,1)
out=CPOP.uneven.var(y,x,beta=2*log(length(x)),sigsquared=4)
out$changepoints
out$min.cost
fit=CPOP.fit(y,x,out$changepoints,4)
cost<-sum(fit$residuals^2/4)+2*log(length(x))*(length(out$changepoints)-2)
cpop.res<-cpop(y,x,sd=2)
expect_equal(cost(cpop.res),cost)
cpop.minseglen.res<-cpop(y,x,sd=2,minseglen=22)
expect_equal(cost(cpop.res),cost(cpop.minseglen.res))
cpop.minseglen.res<-cpop(y,x,sd=2,minseglen=23)
expect_false(isTRUE(all.equal(cost(cpop.res),cost(cpop.minseglen.res))))
cpop.minseglen.res<-cpop(y,x,sd=2,minseglen=26)
expect_equal(changepoints(cpop.minseglen.res)$location[1],110)
})
test_that("test 9 - test use of non default value for grid",
{
set.seed(1)
x<-1:200
changepoints<-c(0,25,50,100)
change.slope<-c(0.2,-0.3,0.2,-0.1)
y<-simchangeslope(x,changepoints,change.slope,1)
cpop.res<-cpop(y,x,sd=2)
cpop.grid.res<-cpop(y,x,grid=c(0.5,1.5,99.0),sd=2)
expect_false(isTRUE(all.equal(cost(cpop.res),cost(cpop.grid.res))))
expect_equal(changepoints(cpop.grid.res)$location[1],99)
})
test_that("test 10 - test use of non unit locations data",
{
set.seed(0)
x <- seq(0,1,0.01)
n <- length(x)
sigma <- rep(0.1,n)
mu <- c(2*x[1:floor(n/2)],2 - 2*x[(floor(n/2)+1):n])
y <- rnorm(n,mu,sigma)
# use the locations in x
out=CPOP.uneven.var(y,x,beta=2*log(length(y)),sigsquared=0.01)
cpop.res <- cpop(y,x,beta=2*log(length(y)),sd=0.1)
fit=CPOP.fit(y,x,out$changepoints,0.1)
RSS<-sum(fit$residuals^2)
expect_equal(sum(fitted(cpop.res)$RSS),RSS)
})
test_that("test 11 - default x values ",
{
# generate some test data
set.seed(0)
x <- seq(0,1,0.01)
n <- length(x)
sigma <- rep(0.1,n)
mu <- c(2*x[1:floor(n/2)],2 - 2*x[(floor(n/2)+1):n])
y <- rnorm(n,mu,sigma)
# use the locations in x
res <- cpop(y,x,beta=2*log(length(y)),sd=sigma)
fitted.base <- fitted(res)
cpts.base <- changepoints(res)
estimates.base <- estimate(res,x)
# without locations (note explicit paramater names)
res <- cpop(y,beta=2*log(length(y)),sd=sigma)
expect_equal(estimate(res,1:length(y)-1)$y_hat,estimates.base$y_hat)
expect_equal(fitted(res)[,7],fitted.base[,7])
})
test_that("test 12 - shifted x values ",
{
# generate some test data
set.seed(0)
x <- seq(0,1,0.01)
n <- length(x)
sigma <- rep(0.1,n)
mu <- c(2*x[1:floor(n/2)],2 - 2*x[(floor(n/2)+1):n])
y <- rnorm(n,mu,sigma)
# use the locations in x
res <- cpop(y,x,beta=2*log(length(y)),sd=sigma)
fitted.base <- fitted(res)
cpts.base <- changepoints(res)
estimates.base <- estimate(res,x)
x <- x + 1
res <- cpop(y,x,beta=2*log(length(y)),sd=sigma)
expect_equal(estimate(res,x)$y_hat,estimates.base$y_hat)
expect_equal(fitted(res)[,7],fitted.base[,7])
x <- x - 1
for(i in 1:10)
{
x <- x + rnorm(1,0,10)
res <- cpop(y,x,beta=2*log(length(y)),sd=sigma)
expect_equal(estimate(res,x)$y_hat,estimates.base$y_hat)
expect_equal(fitted(res)[,7],fitted.base[,7])
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.