# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# #
# A minor simulation on the Ornstein - Uhlenbeck process #
# with changes #
# #
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
library(tidyverse)
library(parallel) # for mclapply
library(DeCAFS)
library(AR1seg) # not available for R 4.x
source("simulations/helper_functions.R")
# data generating function
dataOrnsteinUhlenbech <- function (n = 1e3, y0 = 0, theta = 0, sdEta = 1, sdNu = 1, sdEpsilon = 1, type = c("none", "up", "updown", "rand1"), nbSeg = 20, jumpSize = 10) {
f <- scenarioGenerator(n, type = type, nbSeg = nbSeg, jumpSize = jumpSize)
dw <- rnorm(n, 0, sdEta)
nu <- vector(length = n, mode = "double")
nu[1] <- rnorm(1, 0, sdNu^2/(1-theta^2) )
for (t in 2:n) {
nu[t] <- nu[t-1] - theta * nu[t-1] + sdNu * dw[t-1]
}
signal <- f + nu
y <- f + nu + sdEpsilon
return(list(y = y, signal = signal, changepoints = which(diff(f) != 0)))
}
# simulation settings
REPS <- 100 # number of replicates
N <- 5e3 # lenght of the sequence
CORES <- 6
# generate a list of simulations
simulations <- expand.grid(sigmaEta = 1,
sigmaNu = 1,
theta = seq(0, .99, length.out = 8),
scenario = c("none", "up", "updown", "rand1"),
jumpSize = 5)
##### FUNCTION FOR RUNNING SIMULATIONS ####
runSim <- function(i, simulations) {
# here we save the simulation
fileName <- paste(c("simulations/additional_simulations/resOU/", simulations[i, ], ".RData"), collapse = "")
# if file already exist, do not run
if (!file.exists(fileName)) {
cat("Running ", fileName, "\n")
p <- simulations[i, ]
Y <- mclapply(1:REPS, function(r) dataOrnsteinUhlenbech(N, theta = p$theta, sdEta = p$sigmaEta, sdNu = p$sigmaNu, jumpSize = p$jumpSize, type = as.character(p$scenario)), mc.cores = CORES)
signal <- lapply(Y, function(r) r$signal)
y <- lapply(Y, function(r) r$y)
changepoints <- Y[[1]]$changepoints
# DeCAFS K 15
if (p$sigmaEta == 0)
resDeCAFSESTK15 <- mclapply(y, function(y){
est <- estimateParameters(y, sdEtaUpper = .0001)
est$sdEta <- 0
DeCAFS(y, beta = 2 * log(N), modelParam = est)
}, mc.cores = CORES)
else
resDeCAFSESTK15 <- mclapply(y, DeCAFS, mc.cores=CORES)
# ar1seg with estimator
resar1segEST <- mclapply(y, AR1seg_func, Kmax = 40, mc.cores=CORES)
save(
signal,
y,
changepoints,
resDeCAFSESTK15,
resar1segEST,
file = fileName
)
}
}
##### RUNNING SIMULATIONS FOR RANGING THETA #####
# selecting the relevant simulations
toSummarize <- simulations
# running the simulations (set to T to run)
if (T) lapply(1:nrow(toSummarize), runSim, simulations = toSummarize)
# generate the F1 dataset
F1df <- mclapply(1:nrow(toSummarize), function(i) {
p <- toSummarize[i, ]
print(p)
fileName <- paste(c("simulations/additional_simulations/resOU/", p, ".RData"), collapse = "")
if (!file.exists(fileName)) {
cat("Missing", paste0(Map(paste, names(p), p), collapse = " "), "\n")
return(NULL)
} else load(fileName)
AR1segdfest <- cbind(p$theta,
sapply(resar1segEST, function(r)
computeF1Score(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
sapply(resar1segEST, function(r)
computePrecision(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
sapply(resar1segEST, function(r)
computeRecall(c(changepoints, N), r$PPSelectedBreaks, 3)) %>% as.numeric, # comptuting the F1
as.character(p$scenario),
"AR1Seg est")
DeCAFSdfK15 <- cbind(p$theta,
sapply(resDeCAFSESTK15, function(r) computeF1Score(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
sapply(resDeCAFSESTK15, function(r) computePrecision(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
sapply(resDeCAFSESTK15, function(r) computeRecall(c(changepoints, N), c(r$changepoints, N), 3)) %>% as.numeric,
as.character(p$scenario),
"DeCAFS est")
return(rbind(DeCAFSdfK15, AR1segdfest))
}, mc.cores = 6)
F1df <- Reduce(rbind, F1df)
colnames(F1df) <- c("theta", "F1Score", "Precision", "Recall", "Scenario", "Algorithm")
F1df <- as_tibble(F1df) %>% mutate(theta = as.numeric(theta),
F1Score = as.numeric(F1Score),
Precision = as.numeric(Precision),
Recall = as.numeric(Recall))
cbPalette3 <- c("#56B4E9", "#33cc00", "#434242", "#542354")
scores <- ggplot(F1df,
aes(x = theta, y = F1Score, group = Algorithm, by = Algorithm, col = Algorithm)) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .05) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPalette3) +
xlab(expression(italic(theta)))
scores
ggsave(scores, width = 6, height = 4, units = "in", file = "simulations/outputs/OUF1.pdf", device = "pdf", dpi = "print")
Prec <- ggplot(F1df,
aes(x = theta, y = Precision, group = Algorithm, by = Algorithm, col = Algorithm)) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .05) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPalette3) +
xlab(expression(italic(theta)))
Prec
ggsave(Prec, width = 6, height = 4, units = "in", file = "simulations/outputs/OUPrec.pdf", device = "pdf", dpi = "print")
Rec <- ggplot(F1df,
aes(x = theta, y = Recall, group = Algorithm, by = Algorithm, col = Algorithm)) +
stat_summary(fun.data = "mean_se", geom = "line") +
stat_summary(fun.data = "mean_se", geom = "errorbar", width = .05) +
facet_wrap(~ Scenario) +
scale_color_manual(values = cbPalette3) +
xlab(expression(italic(theta)))
Rec
ggsave(Rec, width = 6, height = 4, units = "in", file = "simulations/outputs/OURec.pdf", device = "pdf", dpi = "print")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.