#' @title Modeling NB Tagwise-Trended Dispersion with the Adjusted Profile Likelihood
#' Estimator (APLE) on Original and Simulated Datasets
#'
#' @description This function fits an NB regression model with
#' tagwise dispersions using the adjusted profile likelihood estimator (APLE). In \code{edgeR},
#' this tagwise dispersion model lies between two extreme scenarios: entirely
#' individual \eqn{\phi_i} for each gene and entirely shared values (i.e. common dispersion).
#' The function \code{estimateGLMTagwiseDisp} in \code{edgeR} shrinks the dispersion towards
#' a common dispersion or a global dispersion trend. In our implementation, the function
#' \code{model.edgeR.tagtrd}
#' shrinks the tagwise dispersions towards the global dispersion trend. See details below.
#' The output of this function will be passed to the main GOF function \code{\link{nb.gof.m}}.
#'
#' @details In this tagwise-trended dispersion model, the dispersion parameter \eqn{\phi_i} is
#' estimated by maximizing a penalized log-likelihood \eqn{APL_g(\phi_g)} plus a weighted shared
#' log-likelihood. The weight denoted by \eqn{G_0} controls the level of shrinkage applied to
#' purely genewise dispersions towards a common dispersion. In the paper of
#' McCarthy et al. (2012),
#' \eqn{G_0=20/df} performs well over real RNA-Seq datasets. Here the numerator 20 is the prior
#' degrees of freedom, which can be specified by the argument \code{prior.df} in the lower-level
#' function \code{\link{dispCoxReidInterpolateTagwise}} in \code{edgeR}. The denominator "df" is
#' the residual degrees of freedom (number of libraries minus the number of distinct treatment
#' groups). We leave the default value of \code{prior.df} at 10. See the
#' \code{\link{estimateGLMTrendedDisp}}, \code{\link{estimateGLMTagwiseDisp}},
#' \code{\link{dispCoxReidInterpolateTagwise}}, lower-level functions for the \code{edgeR}
#' trended dispersion models, and \code{\link{glmFit}} functions in the
#' \code{edgeR} package for more details.
#'
#' @usage
#' model.edgeR.tagtrd(counts, x, lib.sizes=colSums(counts), prior.df=prior.df, min.n=min.n, method=method)
#'
#' @param counts an m-by-n count matrix of non-negative integers. For a typical
#' RNA-Seq experiment, this is the read counts with m genes and n samples.
#' @param x an n-by-p design matrix.
#' @param lib.sizes library sizes of an RNA-Seq experiment. Default is the column
#' sums of the \code{counts} matrix.
#' @param prior.df prior degrees of freedom to control the level of shrinkage (default is 10). See
#' \code{\link{estimateGLMTagwiseDisp}} for more details.
#' This argument is controlled by a higher level function \code{\link{nb.gof.m}}.
#' @param min.n minimim number of genes in a bin. Default is 100. See \code{\link{dispBinTrend}}
#' for details (lower-level function of \code{\link{estimateGLMTrendedDisp}}).
#' @param method method for estimating the trended dispersion, including "auto", "bin.spline", "bin.loess", "power" and "spline".
#' If NULL, then the "auto" method. Normally the number of tags analyzed is greater than 200, so the "bin.spline" method is used which
#' calls the \code{\link{dispBinTrend}} function. See \code{\link{estimateGLMTrendedDisp}} for more details.
#'
#' @return A list of quantities to be used in the main \code{\link{nb.gof.m}} function.
#'
#' @seealso \code{\link{model.edgeR.genewise}} for the non-shrinkage, entirely genewise model,
#' and \code{\link{model.edgeR.tagcom}} for the tagwise model that shrinks towards a common
#' dispersion.
#'
#' @author Gu Mi <neo.migu@gmail.com>, Yanming Di, Daniel Schafer
#'
#' @references See \url{https://github.com/gu-mi/NBGOF/wiki/} for more details.
#'
model.edgeR.tagtrd = function(counts, x, lib.sizes=colSums(counts), prior.df = prior.df, min.n = min.n, method=method){
grp.ids = factor(apply(x, 1, function(x){paste(rev(x), collapse = ".")}),
labels = seq(ncol(x)))
## edgeR tagwise-trended dispersion:
method = ifelse(test = is.null(method), "auto", method)
stopifnot(method %in% c("auto", "bin.spline", "bin.loess", "power", "spline"))
# keep only complete cases:
counts = counts[complete.cases(counts), ]
y.dge = DGEList(counts=counts)
y.dge$offset = log(lib.sizes)
y.dge = estimateGLMTrendedDisp(y.dge, design=x, min.n=min.n, method=method)
e.tgt = estimateGLMTagwiseDisp(y.dge, design=x, prior.df = prior.df, trend=TRUE)
tgt.fit = glmFit(y=counts, design=x, dispersion=e.tgt$tagwise.dispersion)
# extract quantities:
mu.hat.m = tgt.fit$fitted.values # mu may be close to 0
phi.hat.m = tgt.fit$dispersion # there may be NA's
v = mu.hat.m + phi.hat.m * mu.hat.m^2
res.m = as.matrix((counts - mu.hat.m) / sqrt(v))
# make sure 0/0 (NaN) and 1/0 (Inf) won't appear in residual matrix (before sorting)
res.m[ is.nan(res.m) ] = 0
res.m[ is.infinite(res.m) ] = 0
# sort res.m with care!
res.om = t(apply(res.m, 1, sort.vec, grp.ids))
ord.res.v = as.vector(t(res.om))
# save as a list
model_tgt_m_obj = list(mu.hat.mat = mu.hat.m,
res.mat = res.m,
res.omat = res.om,
ord.res.vec = ord.res.v,
phi.hat.mat = phi.hat.m
)
return(model_tgt_m_obj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.