kurtosis: Kurtosis

Description Usage Arguments Details Author(s) References See Also Examples

Description

compute kurtosis of a univariate distribution

Usage

1
2
kurtosis(x, na.rm = FALSE, method = c("excess", "moment", "fisher",
  "sample", "sample_excess"), ...)

Arguments

na.rm

a logical. Should missing values be removed?

method

a character string which specifies the method of computation. These are either "moment", "fisher", or "excess". If "excess" is selected, then the value of the kurtosis is computed by the "moment" method and a value of 3 will be subtracted. The "moment" method is based on the definitions of kurtosis for distributions; these forms should be used when resampling (bootstrap or jackknife). The "fisher" method correspond to the usual "unbiased" definition of sample variance, although in the case of kurtosis exact unbiasedness is not possible. The "sample" method gives the sample kurtosis of the distribution.

x

a numeric vector or object.

...

arguments to be passed.

Details

This function was ported from the RMetrics package fUtilities to eliminate a dependency on fUtilties being loaded every time. This function is identical except for the addition of checkData and additional labeling.

kurtosis(moment) = sum((x-mean(x))^4/var(x)^2)/length(x)

kurtosis(excess) = sum((x-mean(x))^4/var(x)^2)/length(x) - 3

kurtosis(sample) = sum(((x-mean(x))/var(x))^4)*n*(n+1)/((n-1)*(n-2)*(n-3))

kurtosis (fisher) = ((n+1)*(n-1)*((sum(x^4)/n)/(sum(x^2)/n)^2 - (3*(n-1))/(n+1)))/((n-2)*(n-3))

kurtosis(sample excess) = sum(((x-mean(x))/var(x))^4)*n*(n+1)/((n-1)*(n-2)*(n-3)) - 3*(n-1)^2/((n-2)*(n-3))

where n is the number of return, \overline{r} is the mean of the return distribution, σ_P is its standard deviation and σ_{S_P} is its sample standard deviation

Author(s)

Diethelm Wuertz, Matthieu Lestel

References

Carl Bacon, Practical portfolio performance measurement and attribution, second edition 2008 p.84-85

See Also

skewness.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
## mean -
## var -
   # Mean, Variance:
   r = rnorm(100)
   mean(r)
   var(r)

## kurtosis -
   kurtosis(r)

data(managers)
kurtosis(managers[,1:8])

data(portfolio_bacon)
print(kurtosis(portfolio_bacon[,1], method="sample")) #expected 3.03
print(kurtosis(portfolio_bacon[,1], method="sample_excess")) #expected -0.41
print(kurtosis(managers['1996'], method="sample"))
print(kurtosis(managers['1996',1], method="sample"))

guillermozbta/portafolio-master documentation built on May 11, 2019, 7:20 p.m.