Cayley: The Symmetric Cayley Distribution

Description Usage Arguments Details Value References See Also

Description

Density and random generation for the Cayley distribution with concentration kappa (κ)

Usage

1
2
3
4
5
  dcayley(r, kappa = 1, nu = NULL, Haar = TRUE)

  pcayley(q, kappa = 1, nu = NULL, lower.tail = TRUE)

  rcayley(n, kappa = 1, nu = NULL)

Arguments

r,q

vector of quantiles

n

number of observations. If length(n)>1, the length is taken to be the number required

kappa

Concentration paramter

nu

The circular variance, can be used in place of kappa

Haar

logical; if TRUE density is evaluated with respect to Haar

Details

The symmetric Cayley distribution with concentration kappa (or circular variance nu) had density

C(r |κ)= Γ(κ+2)(1+cos r)^κ(1-cos r)/[Γ(κ+1/2)2^(κ+1)√π].

Value

dcayley gives the density, pcayley gives the distribution function, rcayley generates random deviates

References

León C, é JM and Rivest L (2006). "A statistical model for random rotations." _Journal of Multivariate Analysis_, *97*(2), pp. 412-430.

Schaeben H (1997). "A Simple Standard Orientation Density Function: The Hyperspherical de la Vallée Poussin Kernel." _Phys. Stat. Sol. (B)_, *200*, pp. 367-376.

See Also

Angular-distributions for other distributions in the rotations package


heike/rotations documentation built on May 17, 2019, 3:24 p.m.