context('Automatic tuning')
library(maidrr)
# Use a gbm fit on the mtpl_be data to test the partial dependence function
if (!requireNamespace('gbm', quietly = TRUE)) {
stop('Package "gbm" needed for this function to work. Please install it.',
call. = FALSE)
}
data('mtpl_be')
features <- setdiff(names(mtpl_be),c('id', 'nclaims', 'expo', 'postcode'))
set.seed(12345)
gbm_fit <- gbm::gbm(as.formula(paste('nclaims ~',
paste(features, sep = ' ', collapse = ' + '))),
distribution = 'poisson',
data = mtpl_be,
n.trees = 50,
interaction.depth = 3,
shrinkage = 0.1)
gbm_fun <- function(object, newdata) mean(predict(object, newdata, n.trees = object$n.trees, type = 'response'))
test_that('output is of the expected format for only main effects', {
lmbd_tune <- gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'bm', 'coverage', 'fuel', 'sex', 'fleet', 'use'),
target = 'nclaims',
hcut = -1,
pred_fun = gbm_fun,
lambdas = as.vector(outer(seq(1, 10, 1), 10^(-6:-2))),
nfolds = 5,
strat_vars = c('nclaims', 'expo'),
glm_par = alist(family = poisson(link = 'log'),
offset = log(expo)),
err_fun = poi_dev,
ncores = -1)
expect_is(lmbd_tune, 'list')
expect_is(lmbd_tune$slct_feat, 'integer')
expect_is(lmbd_tune$best_surr, 'glm')
expect_is(lmbd_tune$tune_main, 'tbl_df')
expect_null(lmbd_tune$tune_intr)
expect_equal(sum(grepl('_', names(lmbd_tune$slct_feat))), 0)
})
test_that('output is of the expected format when including interactions', {
lmbd_tune <- gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'bm', 'coverage', 'fuel', 'sex', 'fleet', 'use'),
target = 'nclaims',
hcut = 0.75,
pred_fun = gbm_fun,
lambdas = as.vector(outer(seq(1, 10, 1), 10^(-6:-2))),
nfolds = 5,
strat_vars = c('nclaims', 'expo'),
glm_par = alist(family = poisson(link = 'log'),
offset = log(expo)),
err_fun = poi_dev,
ncores = -1)
expect_is(lmbd_tune, 'list')
expect_is(lmbd_tune$slct_feat, 'integer')
expect_is(lmbd_tune$best_surr, 'glm')
expect_is(lmbd_tune$tune_main, 'tbl_df')
expect_is(lmbd_tune$tune_intr, 'tbl_df')
})
test_that('all inputs are checked accordingly', {
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'bm_power'),
target = 'nclaims'),
'No underscores allowed in the variable names, these are interpreted as interactions in maidrr.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'license'),
target = 'nclaims'),
'All the variables needs to be present in the data.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'numclaims'),
'The target variable needs to be present in the data.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
hcut = 1.5),
'Invalid value specified for hcut, must equal -1 or lie within the range \\[0, 1\\].')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
nfolds = 1),
'At least two folds are needed to perform K-fold cross-validation.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
strat_vars = 'wrong_var'),
'The stratification variables in strat_vars need to be present in the data.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
err_fun = function(y_pred) mean(y_pred)),
'The error function must contain arguments y_true and y_pred.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
err_fun = function(y_pred, y_true, y_other) mean(y_pred)),
'The error function can only contain arguments y_true, y_pred and w_case.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
err_fun = function(y_pred, y_true, w_case) mean(y_pred)),
'If w_case is an argument in err_fun, weights must be an argument in glm_par.')
expect_error(gbm_fit %>% autotune(data = mtpl_be,
vars = c('ageph', 'coverage'),
target = 'nclaims',
ncores = 0),
'The number of cores must be strictly positive, or equal to -1 for all available cores.')
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.