knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "HP-" )
The hierarchical model is ideal when a large set of variants and phenotypes are available i.e., a phenome-wide association study with a set of variants which are previously known to have a functional role or have been implicated in a disease. Here we show how to use cophescan to infer hierarchical priors on a small test dataset.
library(cophescan) library(dplyr) library(ggplot2)
data("cophe_multi_trait_data") trait_dat = cophe_multi_trait_data$summ_stat$Trait_1 str(trait_dat) querysnpid <- cophe_multi_trait_data$querysnpid LD <- cophe_multi_trait_data$LD
The first step is preparing the input for the hierarchical model which are the log Bayes factors: lBF.Ha and lBF.Hc.
We will use cophe.susie.lbf
to extract Bayes factors estimated using SuSIE.
Note: When there are no credible sets identified with SuSIE the function internally calculates lBF.Ha and lBF.Hc using the Approximate Bayes Factor method.
## Hide print messages from coloc res.multi.lbf <- list() for (trait_idx in seq_along(cophe_multi_trait_data$summ_stat)){ querytrait_ss <- cophe_multi_trait_data$summ_stat[[trait_idx]] # Here LD is the same querytrait_ss$LD <- LD trait_variant_pair <- paste0('Trait', trait_idx, '_', querysnpid) res.multi.lbf[[trait_variant_pair]] <- cophe.susie.lbf(querytrait_ss, querysnpid = querysnpid, querytrait = paste0('Trait_', trait_idx)) } res.multi.lbf.df = bind_rows(res.multi.lbf)
head(res.multi.lbf.df)
Note:
cophe.susie
or cophe.single
can also be used as input to the hierarchical model as it has all the fields required for the input. This would be useful when you would like to compare results from the fixed priors to those obtained from priors inferred using the hierarchical model. [Swap cophe.susie
for cophe.susie.lbf
above and instead of bind_rows do : res.multi.lbf.df = multitrait.simplify(res.multi.lbf)
].The input df for the multi.dat arguments should contain the following fields: "lBF.Ha","lBF.Hc" and "nsnps".
Set the argument covar to TRUE to include covariates
covar=FALSE covar_vec=rep(1, nrow(res.multi.lbf.df)) ## Set covar to TRUE to include covariates, uncomment the following 2 lines # covar=TRUE # covar_vec = cophe_multi_trait_data$covar_vec cophe.hier.res <- run_metrop_priors(res.multi.lbf.df, avg_posterior=TRUE, avg_pik = TRUE, covar_vec = covar_vec, covar = covar, nits = 50000, thin = 5) names(cophe.hier.res)
Note: Setting posterior or pik to TRUE is memory intensive for very large datasets
Run 3-4 chains of the model and check if there is convergence of chains. Note: For large datasets run the chains separately and save them in individual .RData files. These can be loaded later for diagnostics.
cophe.hier.res.chain.list <- lapply(1:4, function(x) run_metrop_priors(res.multi.lbf.df, avg_posterior=TRUE, avg_pik = TRUE, covar_vec = covar_vec, covar = covar, nits = 50000, thin = 5))
# Store user parameters old_par <- par(no.readonly = TRUE) # chain_colors <- c("#e63946c4", "#f1faee", "#a8dadc", "#457b9d" ) chain_colors <- c("#f4f1de", "#e07a5fb2", "#3d405bb2", "#81b29aa6") layout(matrix(c(1, 2, 3, 4, 5, 5), ncol=2, byrow = TRUE), respect = TRUE, heights = c(0.9, 0.9, 0.1)) matplot(sapply(cophe.hier.res.chain.list, function(x) x$ll), type = "l", col = chain_colors, main ="loglik", ylab = "ll", xlab = "Iteration", lty = 1) y_ax <- c("alpha", "beta", "gamma") num_pars <- ifelse(covar, 3, 2) for (idx in 1:num_pars) { matplot(sapply(cophe.hier.res.chain.list, function(x) x$parameters[idx, ]), type = "l", col = chain_colors, main = paste(y_ax[idx]), ylab = y_ax[idx], xlab = "Iteration", lty = 1 ) } if (!covar) { plot(1, type = "n", axes = FALSE, xlab = "", ylab = "") } par(mar=c(0, 0, 0, 0)) plot(1, type = "n", axes = FALSE, xlab = "", ylab = "") legend("top", legend = paste("Chain", 1:4), col = chain_colors, lty = 1, lwd = 2, horiz = TRUE, bty = "n") # Reset user parameters par(old_par)
cophe.hier.res.chain.list[[1]]$avg.posterior
contains the posterior probabilities of the hypotheses : $H_n$, $H_a$ and $H_c$ for the queryvariant/querytrait pairs obtained from the hierarchical model. Here we use the first chain for prediction.
res.post.prob = cbind(cophe.hier.res.chain.list[[1]]$avg.posterior, cophe.hier.res$data)
We can use the cophe.hyp.predict
function to predict the hypothesis given the posterior probabilities.
The cophe.hyp.call column shows the predicted hypothesis for each query trait-query variant pair.
res.hier.predict <- cophe.hyp.predict(as.data.frame(res.post.prob )) col_disp <- c( "PP.Hn", "PP.Ha", "PP.Hc", "nsnps", "querysnp", "querytrait", "typeBF", "grp", "cophe.hyp.call") knitr::kable(res.hier.predict[, col_disp], row.names = FALSE, digits=3)
Use the cophe_plot
function to return -log10(pval), ppHa and ppHc PheWAS plots from the cophescan output.
res.plots = cophe_plot(res.hier.predict, traits.dat = cophe_multi_trait_data$summ_stat, querysnpid = querysnpid, query_trait_names = paste0('Trait_', 1:24)) # if (!require(ggpubr)) { # install.packages("ggpubr") # } # ggpubr::ggarrange(res.plots$pval, res.plots$ppHa, res.plots$ppHc, ncol = 2, # nrow = 2)
res.plots$pval + theme(legend.position="bottom") res.plots$ppHa + theme(legend.position="bottom") res.plots$ppHc + theme(legend.position="bottom")
Note: For large datasets, it's not feasible to input all coloc-structured data into "traits.dat" at once.
Instead, use a loop and run the "get_beta" function over all the trait-variant pairs, and provide the resulting data frame (after binding the rows) as the "beta_p" argument in cophe_plot
:
# beta_p_list <- lapply(seq_along(cophe_multi_trait_data$summ_stat), function(x) get_beta(list(cophe_multi_trait_data$summ_stat[[x]]), querysnpid, names(cophe_multi_trait_data$summ_stat)[x])) # ### the datsets need not be in a list as in cophe_multi_trait_data$summ_stat and can be stored independently. # beta_p_df = bind_rows(beta_p_list) # ### Make sure the query trait names in beta_p_df are the same as in res.hier.predict # res.plots = cophe_plot(res.hier.predict, querysnpid = querysnpid, query_trait_names = beta_p_df$querytrait, beta_p = beta_p_df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.