###12/28/23
#' NASA GPM Near Real Time rainfall data
#'
#' This function downloads rainfall remote sensing data of \acronym{IMERG} from \acronym{NASA} \acronym{GSFC} servers, extracts data from grids within a specified watershed shapefile, and then generates tables in a format that any hydrological model requires for rainfall data input. The function also generates the rainfall stations file input (file with columns: ID, File NAME, LAT, LONG, and ELEVATION) for those selected grids that fall within the specified watershed. The minimum latency for this function is one day.
#' @param Dir A directory name to store gridded rainfall and rain stations files.
#' @param watershed A study watershed shapefile spatially describing polygon(s) in a geographic projection crs='+proj=longlat +datum=WGS84'.
#' @param DEM A study watershed digital elevation model raster in a geographic projection crs='+proj=longlat +datum=WGS84'.
#' @param start Beginning date for gridded rainfall data.
#' @param end Ending date for gridded rainfall data.
#' @details A user should visit \url{https://disc.gsfc.nasa.gov/information/documents} Data Access document to register with the Earth Observing System Data and Information System (\acronym{NASA Earthdata}) and then authorize \acronym{NASA} GESDISC Data Access to successfully work with this function. The function accesses \acronym{NASA} Goddard Space Flight Center server address for \acronym{IMERG} remote sensing data products at (\url{https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDE.06/}). The function uses variable name ('precipitationCal') for rainfall in \acronym{IMERG} data products. Units for gridded rainfall data are 'mm'.
#'
#' \acronym{IMERG} dataset is the GPM Level 3 \acronym{IMERG} *Early* Daily 0.1 x 0.1 deg (GPM_3IMERGDE) derived from the half-hourly \acronym{GPM_3IMERGHHE}. The derived result represents the final estimate of the daily accumulated precipitation. The dataset is produced at the \acronym{NASA} Goddard Earth Sciences (GES) Data and Information Services Center (DISC) by simply summing the valid precipitation retrievals for the day in GPM_3IMERGHHE and giving the result in (mm) \url{https://gpm.nasa.gov/data/directory}.
#'
#' The \acronym{IMERG} data products are available from 2000-June-1 to present.
#' The function outputs table and gridded data files that match grid points resolution of \acronym{IMERG} data products (i.e., resolution of 0.1 deg).
#'
#' The \command{GPM_NRT} function relies on 'curl' tool to transfer data from \acronym{NASA} servers to a user machine, using HTTPS supported protocol. The 'curl' command embedded in this function to fetch precipitation \acronym{IMERG} netcdf daily global files is designed to work seamlessly given that appropriate logging information are stored in the ".netrc" file and the cookies file ".urs_cookies" as explained in registering with the Earth Observing System Data and Information System. It is imperative to say here that a user machine should have 'curl' installed as a prerequisite to run \command{GPM_NRT}.
#' @note
#' \command{start} should be equal to or greater than 2000-Jun-01.
#'
#' \command{end} the minimum latency is 1 day.
#' @author Ibrahim Mohammed, \email{ibrahim.mohammed@@ku.ac.ae}
#' @keywords NASA IMERG Near Real Time NRT Precipitation
#' @return A table that includes points ID, Point file name, Lat, Long, and Elevation information, and
#' a scalar of rainfall gridded data values at each point within the study watershed in ascii format needed by hydrological model weather inputs will be stored at \code{Dir}.
#' @examples
#' #Lower Mekong basin example
#' \dontrun{GPM_NRT(Dir = "./INPUT/", watershed = "LowerMekong.shp",
#' DEM = "LowerMekong_dem.tif", start = "2022-6-1", end = "2022-6-10")}
#' @import ncdf4 httr stringr utils XML methods getPass
#' @importFrom stats na.exclude
#' @export
GPM_NRT=function(Dir='./INPUT/', watershed ='LowerMekong.shp', DEM = 'LowerMekong_dem.tif', start = '2022-6-1', end = '2022-6-10')
{
if(file.exists('~/.netrc')==FALSE)
{
source(system.file("scripts", "netrc.R",
package = "NASAaccess"))
}
if(file.exists('~/.netrc')==TRUE)
{
if(length(grep("urs.earthdata.nasa.gov", readLines('~/.netrc')))==!0)
{
url.IMERG.input <- 'https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDE.06/'
myvarIMERG <- 'precipitationCal'
#check the GPM IMERG server availability
if(httr::status_code(GET(url.IMERG.input))==200)
{
####Before getting to work on this function do this check
if (as.Date(start) >= as.Date('2000-06-01'))
{
# Constructing time series based on start and end input days!
time_period <- seq.Date(from = as.Date(start), to = as.Date(end), by = 'day')
# Reading cell elevation data (DEM should be in geographic projection)
watershed.elevation <- terra::rast(DEM)
# Reading the study Watershed shapefile
polys <- terra::vect(watershed)
# weather 'precipitation' master file name
filenametableKEY<-paste(Dir,'precipitation','Master.txt',sep='')
# Creating empty lists
filenameMODEL <- list()
filenameMODEL_TXT <- list()
# The IMERG data grid information
# Read the start day first to extract spatial information and assign elevation data to the grids within the study watersheds
#DUMMY_DATE <- as.Date('2014-05-01')
mon <- format(time_period[1],format='%m')
year <- format(time_period[1],format='%Y')
myurl = paste(paste(url.IMERG.input,year,mon,sep = '/'),'/',sep = '')
if(httr::status_code(GET(myurl))==200)
{
r <- httr::GET(myurl)
filenames <- httr::content(r, "text")
filenames <- XML::readHTMLTable(XML::htmlParse(filenames))[[1]]#getting the daily files at each monthly URL
filenames <- unique(stats::na.exclude(stringr::str_extract(as.character(filenames$Name),'3B-DAY.+(.nc4)')))
# Extract the IMERG nc4 files for the specific month
# trying here the first day since I am only interested on grid locations
# downloading one file
if(dir.exists('./temp/')==FALSE){dir.create('./temp/')}
utils::download.file(quiet = T,method='curl',url=paste(myurl,filenames[1],sep = ''),destfile = paste('./temp/',filenames[1],sep = ''), mode = 'wb', extra = '-n -c ~/.urs_cookies -b ~/.urs_cookies -L')
test1<-file.info(paste('./temp/',filenames[1],sep= ''))$size
stopifnot('The GPM IMERG server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.' = test1 > 3.0e6)
#reading ncdf file
nc<-ncdf4::nc_open( paste('./temp/',filenames[1],sep = '') )
#since geographic info for all files are the same (assuming we are working with the same data product)
###evaluate these values one time!
###getting the y values (longitudes in degrees east)
nc.long.IMERG<-ncdf4::ncvar_get(nc,nc$dim[[1]])
####getting the x values (latitudes in degrees north)
nc.lat.IMERG<-ncdf4::ncvar_get(nc,nc$dim[[2]])
# create a raster
IMERG<-terra::rast(nrows=length(nc.lat.IMERG),
ncols=length(nc.long.IMERG),
xmin=nc.long.IMERG[1],
xmax=nc.long.IMERG[NROW(nc.long.IMERG)],
ymin=nc.lat.IMERG[1],
ymax=nc.lat.IMERG[NROW(nc.lat.IMERG)],
crs='+proj=longlat +datum=WGS84')
#fill raster with dummy values
values(IMERG) <- 1:ncell(IMERG)
ncdf4::nc_close(nc)
# Convert raster to points
IMERG.points <- terra::as.points(IMERG, na.rm = TRUE)
# Intersect to keep only points on the shape
IMERG.points <- IMERG.points[polys]
#obtain cell numbers within the IMERG raster
cell.no <- terra::cells(IMERG, IMERG.points)[,2]
#obtain lat/long values corresponding to watershed cells
cell.longlat<-terra::xyFromCell(IMERG,cell.no)
cell.rowCol <- terra::rowColFromCell(IMERG,cell.no)
points_elevation<-terra::extract(x=watershed.elevation,y=cell.longlat,method='simple')
FinalTable<-data.frame(ID=unlist(cell.no),cell.longlat,cell.rowCol,Elevation=points_elevation[,])
rm(IMERG)
}
#### Begin writing weather input tables
#### Get the file names and then put the first record date
for(jj in 1:dim(FinalTable)[1])
{
if(dir.exists(Dir)==FALSE){dir.create(Dir,recursive = TRUE)}
filenameMODEL[[jj]]<-paste('precipitation',FinalTable$ID[jj],sep='')
filenameMODEL_TXT[[jj]]<-paste(Dir,filenameMODEL[[jj]],'.txt',sep='')
#write the data beginning date once!
write(x=format(time_period[1],'%Y%m%d'),file=filenameMODEL_TXT[[jj]])
}
#### Write out the grid information master table
OutTable<-data.frame(ID=FinalTable$ID,NAME=unlist(filenameMODEL),LAT=FinalTable$y,LONG=FinalTable$x,ELEVATION=FinalTable$Elevation)
utils::write.csv(OutTable,filenametableKEY,row.names = F,quote = F)
#### Start doing the work!
#### iterate over days to extract record at IMERG grids established in 'FinalTable'
for(kk in 1:length(time_period))
{
mon <- format(time_period[kk],format='%m')
year <- format(time_period[kk],format='%Y')
myurl = paste(paste(url.IMERG.input,year,mon,sep = '/'),'/',sep = '')
if(httr::status_code(GET(myurl))==200)
{
r <- httr::GET(myurl)
filenames <- httr::content(r, "text")
filenames <- XML::readHTMLTable(XML::htmlParse(filenames))[[1]]# Getting the daily files at each monthly URL
filenames <- unique(stats::na.exclude(stringr::str_extract(as.character(filenames$Name),'3B-DAY.+(.nc4)')))
tt<-as.Date(stringr::str_extract(stringr::str_extract(filenames,"20.+-"),'[0-9]{1,8}'),format='%Y%m%d')
pp<-tt%in%time_period[kk]
filenames<-filenames[pp]
# Extract the ncdf files
for(ll in 1:length(filenames))# Iterating over each daily data file
{
# Downloading the file
if(dir.exists('./temp/')==FALSE){dir.create('./temp/')}
if(file.exists(paste('./temp/',filenames[ll],sep= ''))==FALSE){utils::download.file(quiet = T,method='curl',url=paste(myurl,filenames[ll],sep = ''),destfile = paste('./temp/',filenames[ll],sep = ''), mode = 'wb', extra = '-n -c ~/.urs_cookies -b ~/.urs_cookies -L')}
# Reading the ncdf file
nc<-ncdf4::nc_open( paste('./temp/',filenames[ll],sep = '') )
if(ll==1)
{
IMERG<-terra::rast(nrows=length(nc.lat.IMERG),
ncols=length(nc.long.IMERG),
xmin=nc.long.IMERG[1],
xmax=nc.long.IMERG[NROW(nc.long.IMERG)],
ymin=nc.lat.IMERG[1],
ymax=nc.lat.IMERG[NROW(nc.lat.IMERG)],
crs='+proj=longlat +datum=WGS84')
}
###save the daily weather data values in a raster
values(IMERG) <- ncdf4::ncvar_get(nc,myvarIMERG)
# Reorder the rows
IMERG <- terra::flip(IMERG,direction="v")
ncdf4::nc_close(nc)
#obtain daily weather values at cells bounded with the study watershed (extract values from a raster)
cell.values<-extract(IMERG,FinalTable$ID)[,]
cell.values[is.na(cell.values)] <- '-99.0' #filling missing data
#loop through the grid points to write out the daily weather data
for(jj in 1:dim(FinalTable)[1])
{
write(x=cell.values[jj],filenameMODEL_TXT[[jj]],append=T,ncolumns = 1)
}
}
unlink(x='./temp', recursive = TRUE)
}
}
}
else
{
cat('Sorry',paste(format(as.Date(start),'%b'),format(as.Date(start),'%Y'),sep=','),'is out of coverage for IMERG data products.',' \n')
cat('Please pick start date equal to or greater than 2000-Jun-01 to access IMERG data products.',' \n')
cat('Thank you!',' \n')
}
}
else
{
cat('Sorry!',' \n')
cat('The GPM IMERG Early Precipitation L3 server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.',' \n')
cat('Thank you.',' \n')
}
}
}
else
{
cat('Sorry!',' \n')
cat('You need to create two files ".netrc" and ".urs_cookies" at your home Directory.',' \n')
cat('Instructions on creating the ".netrc" and the ".urs_cookies" files can be accessed at https://urs.earthdata.nasa.gov/documentation/for_users/data_access/curl_and_wget',' \n')
cat('Make sure that the ".netrc" file contains the follwoing line with your credentials: ',' \n')
cat('machine urs.earthdata.nasa.gov login uid_goes_here password password_goes_here',' \n')
cat('Thank you.',' \n')
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.