library(drake)
library(QuiPTsim)
plan <- drake_plan(
# data frame with paths of each RDS file containing n-gram counts
df = read.csv("./reduced_alph_enc_alph4_const/alph4_const.csv"),
# specified file paths
paths = as.character(df[df$l_seq == 10 & df$n_motifs == 3, "path"])[1],
# benchmark data for various methods
data_QuiPT = create_benchmark_data(paths, list(method="QuiPT")),
data_Chi = create_benchmark_data(paths, list(method="Chi-squared")),
data_FCBF = create_benchmark_data(paths, list(method="FCBF")),
data_gainratio = create_benchmark_data(paths, list(method="gainratio")),
data_MRMR = create_benchmark_data(paths, list(method="MRMR")),
# results aggregating
results_QuiPT = benchmark_summary(data_QuiPT,
list(method = "QuiPT",
pval_thresholds = c(0.025, 0.01),
pval_adjustments = c("", "BH"))),
results_FCBF = benchmark_summary(data_FCBF, list(method = "FCBF")),
results_Chi = benchmark_summary(data_Chi,
list(method = "Chi-squared",
pval_thresholds = c(0.025, 0.01),
pval_adjustments = c("", "BH"))),
results_gainratio = benchmark_summary(data_gainratio,
list(method = "gainratio",
fraction = 0)),
results = rbind(cbind(method_name = "QuiPT", results_QuiPT),
cbind(method_name = "Chi-squared", results_Chi),
cbind(method_name = "FCBF", pval_thresholds = "",
pval_adjustments = "", results_FCBF))
)
make(plan
# HPC setup
# ,parallelism = "clustermq",
#jobs = 2,
# console_log_file = "drake.log"
)
vis_drake_graph(plan)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.