binaryComparisons | R Documentation |
Methods for accessing modelling results.
binaryComparisons(x, cls = "class")
## S4 method for signature 'AnalysisData'
binaryComparisons(x, cls = "class")
mtry(x, cls = "class")
## S4 method for signature 'AnalysisData'
mtry(x, cls = "class")
type(x)
## S4 method for signature 'RandomForest'
type(x)
## S4 method for signature 'Univariate'
type(x)
response(x)
## S4 method for signature 'RandomForest'
response(x)
## S4 method for signature 'Univariate'
response(x)
metrics(x)
## S4 method for signature 'RandomForest'
metrics(x)
## S4 method for signature 'list'
metrics(x)
## S4 method for signature 'Analysis'
metrics(x)
predictions(x)
## S4 method for signature 'RandomForest'
predictions(x)
## S4 method for signature 'list'
predictions(x)
## S4 method for signature 'Analysis'
predictions(x)
importanceMetrics(x)
## S4 method for signature 'RandomForest'
importanceMetrics(x)
importance(x)
## S4 method for signature 'RandomForest'
importance(x)
## S4 method for signature 'Univariate'
importance(x)
## S4 method for signature 'list'
importance(x)
## S4 method for signature 'Analysis'
importance(x)
proximity(x, idx = NULL)
## S4 method for signature 'RandomForest'
proximity(x, idx = NULL)
## S4 method for signature 'list'
proximity(x, idx = NULL)
## S4 method for signature 'Analysis'
proximity(x, idx = NULL)
explanatoryFeatures(x, ...)
## S4 method for signature 'Univariate'
explanatoryFeatures(
x,
threshold = 0.05,
value = c("adjusted.p.value", "p.value")
)
## S4 method for signature 'RandomForest'
explanatoryFeatures(
x,
metric = "false_positive_rate",
value = c("value", "p-value", "adjusted_p-value"),
threshold = 0.05
)
## S4 method for signature 'list'
explanatoryFeatures(x, ...)
## S4 method for signature 'Analysis'
explanatoryFeatures(x, ...)
x |
S4 object of class |
cls |
sample information column to use |
idx |
sample information column to use for sample names. If |
... |
arguments to parse to method for specific class |
threshold |
threshold below which explanatory features are extracted |
value |
the importance value to threshold. See the usage section for possible values for each class. |
metric |
importance metric for which to retrieve explanatory features |
binaryComparisons
: Return a vector of all possible binary comparisons for a given sample information column.
mtry
: Return the default mtry
random forest parameter value for a given sample information column.
type
: Return the type of random forest analysis.
response
: Return the response variable name used for a random forest analysis.
metrics
: Retrieve the model performance metrics for a random forest analysis
predictions
: Retrieve the out of bag model response predictions for a random forest analysis.
importanceMetrics
: Retrieve the available feature importance metrics for a random forest analysis.
importance
: Retrieve feature importance results.
proximity
: Retrieve the random forest sample proximities.
explanatoryFeatures
: Retrieve explanatory features.
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact)
## Return possible binary comparisons for the `day` response column
binaryComparisons(d,cls = 'day')
## Return the default random forest `mtry` parameter for the `day` response column
mtry(d,cls = 'day')
## Perform random forest analysis
rf_analysis <- randomForest(d,cls = 'day')
## Return the type of random forest
type(rf_analysis)
## Return the response variable name used
response(rf_analysis)
## Retrieve the model performance metrics
metrics(rf_analysis)
## Retrieve the out of bag model response predictions
predictions(rf_analysis)
## Show the available feature importance metrics
importanceMetrics(rf_analysis)
## Retrieve the feature importance results
importance(rf_analysis)
## Retrieve the sample proximities
proximity(rf_analysis)
## Retrieve the explanatory features
explanatoryFeatures(rf_analysis,metric = 'false_positive_rate',threshold = 0.05)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.