| plotUnsupervisedRF | R Documentation | 
A multidimensional scaling (MDS) plot of unsupervised random forest analysis
plotUnsupervisedRF(
  x,
  cls = "class",
  rf = list(),
  label = NULL,
  shape = FALSE,
  ellipses = TRUE,
  seed = 1234,
  title = "",
  legendPosition = "bottom",
  labelSize = 2,
  ...
)
## S4 method for signature 'AnalysisData'
plotUnsupervisedRF(
  x,
  cls = "class",
  rf = list(),
  label = NULL,
  shape = FALSE,
  ellipses = TRUE,
  seed = 1234,
  title = "",
  legendPosition = "bottom",
  labelSize = 2
)
## S4 method for signature 'Analysis'
plotUnsupervisedRF(
  x,
  cls = "class",
  rf = list(),
  label = NULL,
  shape = FALSE,
  ellipses = TRUE,
  seed = 1234,
  title = "",
  legendPosition = "bottom",
  labelSize = 2,
  type = c("pre-treated", "raw")
)
| x | object of class  | 
| cls | sample information column to use for sample labelling | 
| rf | list of additional parameters to pass to  | 
| label | info column to use for sample labels. Set to NULL for no labels. | 
| shape | TRUE/FALSE use shape aesthetic for plot points. Defaults to TRUE when the number of classes is greater than 12 | 
| ellipses | TRUE/FALSE, plot multivariate normal distribution 95% confidence ellipses for each class | 
| seed | random number seed | 
| title | plot title | 
| legendPosition | legend position to pass to legend.position argument
of  | 
| labelSize | label size. Ignored if  | 
| ... | arguments to pass to the appropriate method | 
| type | 
 | 
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact)
## Unsupervised random forest MDS plot
plotUnsupervisedRF(d,cls = 'day')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.