| plotExplanatoryHeatmap | R Documentation |
Plot a heatmap of explanatory features.
plotExplanatoryHeatmap(x, ...)
## S4 method for signature 'Univariate'
plotExplanatoryHeatmap(
x,
threshold = 0.05,
title = "",
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
dendrogram = TRUE,
featureLimit = Inf,
...
)
## S4 method for signature 'RandomForest'
plotExplanatoryHeatmap(
x,
metric = "false_positive_rate",
threshold = 0.05,
title = "",
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
dendrogram = TRUE,
featureLimit = Inf,
...
)
## S4 method for signature 'list'
plotExplanatoryHeatmap(
x,
threshold = 0.05,
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
featureLimit = Inf
)
## S4 method for signature 'Analysis'
plotExplanatoryHeatmap(
x,
threshold = 0.05,
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
featureLimit = Inf
)
x |
object of class |
... |
arguments to pass to method |
threshold |
score threshold to use for specifying explanatory features |
title |
plot title |
distanceMeasure |
distance measure to use for clustering. See details. |
clusterMethod |
clustering method to use. See details |
featureNames |
should feature names be plotted? |
dendrogram |
TRUE/FALSE. Should the dendrogram be plotted? |
featureLimit |
The maximum number of features to plot |
metric |
importance metric on which to retrieve explanatory features |
Distance measures can be one of any that can be used for the method argument of dist().
Cluster methods can be one of any that can be used for the method argument of hclust().
library(metaboData)
x <- analysisData(data = abr1$neg[,200:300],info = abr1$fact)
## random forest classification example
random_forest <- randomForest(x,cls = 'day')
plotExplanatoryHeatmap(random_forest)
## random forest regression example
random_forest <- randomForest(x,cls = 'injorder')
plotExplanatoryHeatmap(random_forest,metric = '%IncMSE',threshold = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.