R/overlap.R

Defines functions overlap

Documented in overlap

#' Overlap indices for single-case data
#'
#' The `overlap` function provides the most common overlap indices for
#' single-case data and some additional statistics.
#'
#' @inheritParams .inheritParams
#' @details See corresponding functions of PND, PEM, PET, NAP, PAND for
#'   calculation. Tau_U(A) reports "A vs. B - Trend A" whereas Tau_U(BA) reports
#'   "A vs. B + Trend B - Trend A". Base_Tau is baseline corrected tau
#'   (correction applied when autocorrelation in phase A is significant).
#'   Diff_mean is the mean difference. Diff_trend is the difference in the
#'   regression estimation of the dependent variable on measurement-time (`x ~
#'   mt`) for each phase. SMD is the mean difference divided by the standard
#'   deviation of phase A. Hedges_g is the mean difference divided by the pooled
#'   standard deviation: \eqn{\sqrt{ (n_A - 1)sd_A^2 + (n_B - 1)sd_B^2 \over n_A
#'   + n_B - 2 }} with a hedges correction applied: \eqn{Hedges_g * (1 -
#'   \frac{3}{4n - 9} ) )}.
#' @return
#'  |  |  |
#'  | --- | --- |
#'  | `overlap` | A data frame consisting of the following indices for each single-case for all cases: PND, PEM, PET, NAP, PAND, IRD, Tau-U (A vs. B - Trend A), Diff_mean, Diff_trend, SMD, Hedges-g. |
#'  | `phases.A` | Selection for A phase. |
#'  | `phases.B` | Selection for B phase. |
#'  | `design` | Phase design. |
#' @family overlap functions
#' @author Juergen Wilbert
#' @examples
#'
#' ## Display overlap indices for one single-case
#' overlap(Huitema2000, decreasing = TRUE)
#'
#' ## Display overlap indices for six single-cases
#' overlap(GruenkeWilbert2014)
#'
#' ## Combining phases for analyszing designs with more than two phases
#' overlap(exampleA1B1A2B2, phases = list(c("A1","A2"), c("B1","B2")))
#'
#' @export
overlap <- function(data, dvar, pvar, mvar, 
                    decreasing = FALSE, 
                    phases = c(1, 2)){

  # set attributes to arguments else set to defaults of scdf
  if (missing(dvar)) dvar <- dv(data) else dv(data) <- dvar
  if (missing(pvar)) pvar <- phase(data) else phase(data) <- pvar
  if (missing(mvar)) mvar <- mt(data) else mt(data) <- mvar
  
  data_list <- .prepare_scdf(data)
  
  keep <- recombine_phases(data_list, phases = phases)
  data_list <- keep$data
  
  designs <- lapply(keep$designs, function(x) x$values)
  designs <- sapply(designs, function(x) paste0(x, collapse = "-"))
  
  N <- length(data_list)

  case_names <- revise_names(data_list)

  vars <- c(
    "PND", "PEM", "PET", "NAP", "NAP rescaled", "PAND", "IRD", "Tau_U(A)", 
    "Tau_U(BA)", "Base_Tau",  "Diff_mean", "Diff_trend", "SMD", "Hedges_g"
  )
  df <- as.data.frame(matrix(nrow = N, ncol = length(vars)))
  colnames(df) <- vars
  df <- data.frame(Case = case_names, Design = designs, df, check.names = FALSE)
  
  for(i in 1:N) {
    data <- data_list[i]
    df$PND[i] <- pnd(data, decreasing = decreasing)$PND
    df$PEM[i] <- pem(data, 
      decreasing = decreasing, binom.test = FALSE, chi.test = FALSE)$PEM$PEM
    df$PET[i] <- pet(data, decreasing = decreasing)$PET$PET
    df$NAP[i] <- nap(data, decreasing = decreasing)$nap[[1, "NAP"]]
    df$"NAP rescaled"[i] <- nap(
      data, decreasing = decreasing)$nap[[1, "NAP Rescaled"]]
    df$PAND[i] <- pand(data, decreasing = decreasing)$pand
    df$IRD[i] <- ird(data, decreasing = decreasing)$ird
    df$`Tau_U(A)`[i] <- tau_u(data)$table[[1]]["A vs. B - Trend A", "Tau"]
    df$`Tau_U(BA)`[i] <- tau_u(data)$table[[1]]["A vs. B + Trend B - Trend A", "Tau"]
    df$Base_Tau[i] <- corrected_tau(data)$tau
    
    data <- data[[1]]
    A <- data[data[, pvar] == "A", dvar]
    B <- data[data[, pvar] == "B", dvar]
    mtA <- data[data[, pvar] == "A", mvar]
    mtB <- data[data[, pvar] == "B", mvar]
    nA <- sum(!is.na(A))
    nB <- sum(!is.na(B))    
    n <- nA + nB
    mA <- mean(A, na.rm = TRUE)
    mB <- mean(B, na.rm = TRUE)    
    sdA <- sd(A, na.rm = TRUE)
    sdB <- sd(B, na.rm = TRUE)    
    
    
    df$Diff_mean[i] <- mB - mA
    df$SMD[i] <- (mB - mA) / sdA
    
    sd_hg <- sqrt(
      ( (nA - 1) * sdA^2 + (nB - 1) * sdB^2) 
      / 
      (nA + nB - 2) 
    )  
    
    df$Hedges_g[i] <- (mB - mA) / sd_hg
    df$Hedges_g[i] <- df$Hedges_g[i] * (1 - (3 / (4 * n - 9)))
    
    df$Diff_trend[i] <- coef(lm(B ~ I(mtB - mtB[1] + 1)))[2] - 
                        coef(lm(A ~ I(mtA - mtA[1] + 1)))[2]
    
  }
  
  out <- list(
    overlap = df, 
    phases.A = keep$phases_A, 
    phases.B = keep$phases_B 
    #design = keep$design[[1]]$values
  )
  
  atr <- scdf_attr(data_list)
  for(i in seq_along(atr)) attr(out, names(atr)[i]) <- atr[[i]]
  class(out) <- c("sc_overlap")
  
  out
}
jazznbass/scan_develop documentation built on Sept. 9, 2024, 6:23 a.m.