Description Usage Arguments Value Author(s) References See Also Examples
Generates nonnormal data using the Vale and Maurelli (1983) approach from a correlation matrix \dot{Σ} with predefined skewness and kurtosis.
1 2 3 4 5 6 7 8 9 10 |
n |
Sample size. |
Sigma_dot |
p \times p correlation matrix (\dot{Σ}). |
skew |
Skewness vector. If a single value is given, the function assumes that the p elements in the vector will have the same skewness. |
kurt |
Kurtosis vector. If a single value is given, the function assumes that the p elements in the vector will have the same kurtosis. |
seed |
Random seed for reproducibility. |
rescale |
Logical.
Rescale the data using means |
mu |
Vector of means
corresponding to each element of |
sigma2 |
Vector of variances
corresponding to each element of |
Returns an n \times p nonnormal data matrix using the Vale and Maurelli (1983) approach from a p \times p correlation matrix provided and predefined skewness and kurtosis.
Ivan Jacob Agaloos Pesigan
Fleishman, A. I (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521–532.
Vale, D. C., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465–471.
Other data generating functions:
gendat_linreg_X()
,
gendat_linreg_y()
,
gendat_linreg()
,
gendat_mvn_a()
,
gendat_mvn_fe()
,
gendat_mvn()
,
gendat()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.