gendat_linreg: Generate Random Data From a Linear Regression Model.

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/gendat.R

Description

Generates data from a k-variable linear regression model.

Usage

1
gendat_linreg(n, beta, rFUN_X = rnorm, rFUN_y = rnorm, X_args, y_args)

Arguments

n

Sample size.

beta

k \times 1 vector of k regression parameters.

rFUN_X

The distribution function used to generate values of \mathbf{X}. The default value is rnorm for the Gaussian probability density function.

rFUN_y

The distribution function used to generate values of the residuals ε. The default value is rnorm for the Gaussian probability density function.

X_args

List of arguments to pass to rFUN_X.

y_args

List of arguments to pass to rFUN_y.

Details

Randomly generates the data matrix \mathbf{X} and the regressand data \mathbf{y} using specified population parameters defined by \mathbf{y}_{n \times 1} = \mathbf{X}_{n \times k} \boldsymbol{β}_{k \times 1} + \boldsymbol{ε}_{n \times 1}. Refer to gendat_linreg_X on how \mathbf{X} is generated and gendat_linreg_y on how \mathbf{y} is generated.

Value

Returns a list with two elements X and y.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other data generating functions: gendat_linreg_X(), gendat_linreg_y(), gendat_mvn_a(), gendat_mvn_fe(), gendat_mvn(), gendat_vm(), gendat()

Examples

1
2
3
4
5
6
7
8
data <- gendat_linreg(
  n = 100,
  beta = c(.5, .5, .5),
  rFUN_X = rnorm,
  rFUN_y = rnorm,
  X_args = list(mean = 0, sd = 1),
  y_args = list(mean = 0, sd = 1)
)

jeksterslabds/jeksterslabRds documentation built on July 16, 2020, 3:41 p.m.