Description Usage Arguments Details Author(s) See Also Examples
Generates regressand data from a k-variable linear regression model.
1 | gendat_linreg_y(X, beta, rFUN_y = rnorm, ...)
|
X |
The data matrix, that is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation. Also called the design matrix and model matrix. |
beta |
k \times 1 vector of k regression parameters. |
rFUN_y |
The distribution function
used to generate values of the residuals ε.
The default value is |
... |
Arguments to pass to |
Randomly generates the regressand data (\mathbf{y})
using specified population parameters defined by
\mathbf{y}_{n \times 1}
=
\mathbf{X}_{n \times k}
\boldsymbol{β}_{k \times 1} +
\boldsymbol{ε}_{n \times 1}
.
The distribution of ε is supplied by the argument
rFUN_y
(rnorm
is the default value).
Additional arguments to rFUN_y
are supplied using the
...
argument.
By default,
ε is assumed to be normally distributed
with a mean of 0 and a variance of 1
(
\mathcal{N}
\sim
≤ft(
μ_{ε} = 0,
σ_{ε}^{2} = 1
\right)
).
Ivan Jacob Agaloos Pesigan
Other data generating functions:
gendat_linreg_X()
,
gendat_linreg()
,
gendat_mvn_a()
,
gendat_mvn_fe()
,
gendat_mvn()
,
gendat_vm()
,
gendat()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.