Description Usage Arguments Details Author(s) See Also Examples
Generates data from a particular statistical model.
1 | gendat(n, FUN = gendat_mvn, ...)
|
n |
Sample size. |
FUN |
Function to use to specify the model.
The default function is |
... |
Arguments to pass to |
The default function is gendat_mvn
which generates multivariate normal data from a
p \times p
variance-covariance matrix and
p dimensional
vector of means.
Ivan Jacob Agaloos Pesigan
Other data generating functions:
gendat_linreg_X()
,
gendat_linreg_y()
,
gendat_linreg()
,
gendat_mvn_a()
,
gendat_mvn_fe()
,
gendat_mvn()
,
gendat_vm()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | # Multivariate normal data
Sigma <- matrix(
data = c(
225, 112.50, 56.25,
112.5, 225, 112.5,
56.25, 112.50, 225
),
ncol = 3
)
mu <- c(100, 100, 100)
mvn <- gendat(
n = 100,
FUN = gendat_mvn,
Sigma = Sigma,
mu = mu
)
# Multivariate normal data using RAM
A <- matrix(
data = c(
0, 0.26^(1 / 2), 0,
0, 0, 0.26^(1 / 2),
0, 0, 0
),
ncol = 3
)
S <- F <- I <- diag(3)
S[1, 1] <- 225
S[2, 2] <- 166.5
S[3, 3] <- 166.5
mu <- c(100, 100, 100)
mvn_ram <- gendat(
n = 100,
FUN = gendat_mvn_ram,
A = A,
S = S,
F = F,
I = I,
mu = mu
)
# Multivariate normal data using RAM and sigma2
A <- matrix(
data = c(
0, 0.26^(1 / 2), 0,
0, 0, 0.26^(1 / 2),
0, 0, 0
),
ncol = 3
)
sigma2 <- c(15^2, 15^2, 15^2)
F <- I <- diag(3)
mu <- c(100, 100, 100)
mvn_a <- gendat(
n = 100,
FUN = gendat_mvn_a,
A = A,
sigma2 = sigma2,
F = F,
I = I,
mu = mu
)
# Linear regression
linreg <- gendat(
n = 100,
FUN = gendat_linreg,
beta = c(.5, .5, .5),
rFUN_X = rnorm,
rFUN_y = rnorm,
X_args = list(mean = 0, sd = 1),
y_args = list(mean = 0, sd = 1)
)
# Logistic regression
logreg <- gendat(
n = 100,
FUN = gendat_logreg,
beta = c(.5, .5, .5),
rFUN_X = rnorm,
mean = 0,
sd = 1
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.