logreg: Logistic Regression

Description Usage Arguments Author(s)

View source: R/logreg.R

Description

Estimates parameters \mathbf{b} of a logistic regression model given by \mathbf{y_{n \time 1}} = \mathbf{X_{n \times k}b_{k \times 1}} + \mathbf{e_{n \times 1}} where \mathbf{X_{n \times k}b_{k \times 1}} = \ln ≤ft( \frac{μ}{1 - μ} \right) and μ = \frac{1}{1 + \exp(-1)} = \frac{\exp≤ft( x \right)}{\exp ≤ft( x \right) + 1}.

Usage

1
logreg(X, y, ...)

Arguments

X

The data matrix, that is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation.

y

n \times 1 vector of observations on the regressand variable.

...

Arguments to be passed to the optimization function specified. This is only used when optim is TRUE

Author(s)

Ivan Jacob Agaloos Pesigan


jeksterslabds/jeksterslabRds documentation built on July 16, 2020, 3:41 p.m.