Description Usage Arguments Author(s)
Estimates parameters \mathbf{b} of a logistic regression model given by \mathbf{y_{n \time 1}} = \mathbf{X_{n \times k}b_{k \times 1}} + \mathbf{e_{n \times 1}} where \mathbf{X_{n \times k}b_{k \times 1}} = \ln ≤ft( \frac{μ}{1 - μ} \right) and μ = \frac{1}{1 + \exp(-1)} = \frac{\exp≤ft( x \right)}{\exp ≤ft( x \right) + 1}.
1 |
X |
The data matrix, that is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation. |
y |
n \times 1 vector of observations on the regressand variable. |
... |
Arguments to be passed to the optimization function specified.
This is only used when |
Ivan Jacob Agaloos Pesigan
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.