Description Usage Arguments Details Value Author(s) See Also Examples
Generates multivariate normal data from a p \times p variance-covariance matrix and p dimensional mean vector.
1 | gendat_mvn(n, Sigma, mu = NULL, ...)
|
n |
Sample size. |
Sigma |
p \times p variance-covariance matrix. |
mu |
p dimensional mean vector. Defaults to zeros if unspecified. |
... |
Arguments that can be passed to |
Data is generated from a multivariate normal distrubution given by \mathcal{N} \sim ≤ft( \mathbf{μ_{p \times 1}}, \mathbf{Σ_{p \times p}} \right) where \mathcal{N} has the density function \frac{ \exp ≤ft[ - \frac{1}{2} ≤ft( \mathbf{X} - \boldsymbol{μ} \right)^{T} \right] \boldsymbol{Σ}^{-1} ≤ft( \mathbf{X} - \boldsymbol{μ} \right) } { √{ ≤ft( 2 π \right)^{k} | \boldsymbol{Σ} | } } .
Returns an n \times p multivariate normal data matrix generated using the variance-covariance matrix and the mean vector provided.
Ivan Jacob Agaloos Pesigan
Other data generating functions:
gendat_linreg_X()
,
gendat_linreg_y()
,
gendat_linreg()
,
gendat_mvn_a()
,
gendat_mvn_fe()
,
gendat_vm()
,
gendat()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.