Description Usage Arguments Details Value Author(s) See Also Examples
Generates multivariate normal data from a p \times p A matrix, p dimensional vector of variances of observed variables, and p dimensional vector of means.
1 | gendat_mvn_a(n, A, sigma2, F, I, mu = NULL, ...)
|
n |
Sample size. |
A |
Asymmetric paths, such as regression coefficients and factor loadings. |
sigma2 |
Vector of variances (σ^2). |
F |
Filter matrix used to select the observed variables. |
I |
Identity matrix. |
mu |
p dimensional mean vector. Defaults to zeros if unspecified. |
... |
Arguments to pass to |
The function interally uses the
ram_s
function
to derive the
Σ_{p \times p}
matrix from the matices provided.
The generated
Σ_{p \times p}
matrix is then used together with the
p dimensional
vector of means to generate data using
gendat_mvn
.
Returns an n \times p multivariate normal data matrix generated using the variance-covariance matrix derived from the RAM matrices and the mean vector provided.
Ivan Jacob Agaloos Pesigan
Other data generating functions:
gendat_linreg_X()
,
gendat_linreg_y()
,
gendat_linreg()
,
gendat_mvn_fe()
,
gendat_mvn()
,
gendat_vm()
,
gendat()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.