Description Usage Arguments Value See Also Examples
Generates confidence intervals with bias-correction.
1 |
dist |
Sampling distribution of parameter estimate. |
est |
Parameter estimate. |
Returns a vector with the following elements:
Standard error.
z
statistic.
p
-value.
Logical. Tests if p
< 0.001.
Logical. Tests if p
< 0.01.
Logical. Tests if p
< 0.05.
Lower limit. Alpha 0.001.
Lower limit. Alpha 0.01.
Lower limit. Alpha 0.05.
Upper limit. Alpha 0.05.
Upper limit. Alpha 0.01.
Upper limit. Alpha 0.001.
Logical. Tests if ll_001
< 0 < ul_001
.
Logical. Tests if ll_01
< 0 < ul_01
.
Logical. Tests if ll_05
< 0 < ul_05
.
ll_001
- ul_001
.
ll_01
- ul_01
.
ll_05
- ul_05
.
Confidence interval shape. Alpha 0.001.
Confidence interval shape. Alpha 0.01.
Confidence interval shape. Alpha 0.05.
Note that se
, z
, p
, and sig
are based on the normal theory.
Confidence limits for ci_wald
are based on the normal theory.
Ajustments for asymmetry for ci_bc
and ci_bca
are made in the confidence limits.
Other confidence interval functions:
ci_bca()
,
ci_quantile()
,
ci_wald()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | B <- 5
Sigma <- matrix(
data = c(
225, 112.50, 56.25,
112.5, 225, 112.5,
56.25, 112.50, 225
),
ncol = 3
)
data <- gendat_mvn(
n = 100,
Sigma = Sigma,
mu = c(100, 100, 100)
)
est <- med_simple(data = data, minimal = TRUE)
boot_nb_resamples <- boot_nb(data = data, B = B)
nb <- boot_fit(boot_resamples = boot_nb_resamples, fitFUN = med_simple, minimal = TRUE)
n <- nrow(data)
est_Sigma <- cov(data)
est_mu <- colMeans(data)
boot_pb_resamples <- boot_pb(n = n, Sigma = est_Sigma, mu = est_mu, B = B)
pb <- boot_fit(boot_resamples = boot_pb_resamples, fitFUN = med_simple, minimal = TRUE)
nb_ci_bc <- ci_bc(dist = nb, est = est)
pb_ci_bc <- ci_bc(dist = pb, est = est)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.