Description Usage Arguments Value Author(s) See Also Examples
Generates B
number of parametric bootstrap
resamples from the original sample data.
Data is generated from a multivariate normal distribution
using the estimated variance-covariance matrix and mean vector.
1 | boot_pb(n, Sigma, mu, B = 2000)
|
n |
Sample size. |
Sigma |
Estimated variance-covariance matrix from the original sample data. |
mu |
Estimated mean vector from the original sample data. |
B |
Number of bootstrap resamples. |
Returns a list of parametric bootstrap resamples.
Ivan Jacob Agaloos Pesigan
Other bootstrap functions:
boot_fit()
,
boot_lav()
,
boot_nb()
,
boot_pb_med_simple()
,
boot_pb_vm()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | B <- 5
Sigma <- matrix(
data = c(
225, 112.50, 56.25,
112.5, 225, 112.5,
56.25, 112.50, 225
),
ncol = 3
)
mu <- c(100, 100, 100)
data <- gendat_mvn(
n = 100,
Sigma = Sigma,
mu = mu
)
n <- nrow(data)
est_Sigma <- cov(data)
est_mu <- colMeans(data)
boot_pb_resamples <- boot_pb(n = n, Sigma = est_Sigma, mu = est_mu, B = B)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.