R/GAPIT.Phenotype.Simulation.R

Defines functions `GAPIT.Phenotype.Simulation`

`GAPIT.Phenotype.Simulation` <- function(
  GD,
  GM=NULL,
  h2=.75,
  NQTN=10,
  QTNDist="normal",
  effectunit=1,
  category=1,
  r=0.25,
  CV,
  cveff=NULL,
  a2=0,
  adim=2
  ){
    #Object: To simulate phenotype from genotye
    #Input: GD - n by m +1 dataframe or n by m big.matrix
    #intput: h2 - heritability
    #intput: NQTN - number of QTNs
    #intput: QTNDist - Distribution of QTN, options are  "geometry", "normal"
    #intput: effectunit - effect of fitst QTN, the nect effect is its squre
    #intput: theSeed - seed for randomization
    #Output: Y,U,E,QTN.Position, and effect
    #Straitegy: NA
    #Authors: Qishan Wang and Zhiwu Zhang
    #Start  date: April 4, 2013
    #Last update: April 4, 2013    
    #Set orientation
    #Strategy: the number of rows in GD and GM are the same if GD has SNP as row
##############################################################################################   
    #print("GAPIT.Phenotype.Simulation")
    
    nm=ncol(GD)-1   #Initial by assume GD has snp in col
    if(!is.null(GM)) nm=nrow(GM)
    ngd1=nrow(GD)
    ngd2=ncol(GD)
    ngd1=abs(ngd1-nm)
    ngd2=abs(ngd2-nm)
    orientation="row"
    ns=ncol(GD)
    if(min(ngd1,ngd2)>0){
      orientation="col"
      ns=nrow(GD)
    }
    
    
    
    n= ns   #number of samples
    m=nm  #number of markers
    
    #Set QTN effects
    if (QTNDist=="normal"){ addeffect<-stats::rnorm(NQTN,0,1)
    }else
    {addeffect=effectunit^(1:NQTN)}
    
    
    #Simulating Genetic effect
    #r=sample(2:m,NQTN,replace=F)
    QTN.position=sample(1:m,NQTN,replace=F)
    if(orientation=="col") SNPQ=as.matrix(GD[,(QTN.position+1)])
    if(orientation=="row") SNPQ=t(as.matrix(GD[QTN.position,]))
    
    #Replace non-variant QTNs  (does not work yet)
    #inComplete=TRUE
    #while(inComplete){
    #  inComplete=FALSE
    #  myVar=apply(SNPQ,2,var)
    #  index=which(myVar==0)
    #  nInVar=length(index)
    #  if(nInVar>0){
    #    inComplete=TRUE
    #    New.position=sample(1:m,nInVar,replace=F)
    #    if(orientation=="col") SNPQ[,index]=as.matrix(GD[,(New.position+1)])
    #    if(orientation=="row") SNPQ[,index]=t(as.matrix(GD[New.position,]))
    #  }
    #}#end of while
    
    
    effect=SNPQ%*%addeffect
    effectvar=stats::var(effect)

#Interaction
cp=0*effect
nint= adim
if(a2>0&NQTN>=nint){
  for(i in nint:nint){
    Int.position=sample(NQTN,i,replace=F)
    cp=apply(SNPQ[,Int.position],1,prod)
  }

  cpvar = stats::var(cp)
  
  intvar=(effectvar-a2*effectvar)/a2
  if(is.na(cp[1]))stop("something wrong in simulating interaction")
  if(cpvar>0){
    #print(c(effectvar,intvar,cpvar,var(cp),a2))
    #print(dim(cp))
    cp=cp/sqrt(cpvar)
    cp=cp*sqrt(intvar)
    effectvar=effectvar+intvar
  }else{cp=0*effect}
}   

#Residual variance    
    if(h2 >0){
    	residualvar=(effectvar-h2*effectvar)/h2
    	}else{
      residualvar=1
      effect= effect*0
    }
    
    #Variance explained by each SNP
    effectInd=SNPQ%*%diag(addeffect)
    varInd = apply(effectInd, 2, stats::var)
    effectSeq=order(varInd,decreasing = TRUE)
    
    #Simulating Residual and phenotype
    residual = stats::rnorm(n,0,sqrt(residualvar))

    #environment effect
    if(!is.null(cveff)){
    #print(cveff)
    vy=effectvar+residualvar
    #print(vy)
    ev=cveff*vy/(1-cveff)
    ec=sqrt(ev)/sqrt(diag(stats::var(CV[,-1])))    
    #enveff=as.matrix(myCV[,-1])%*%ec
    enveff=as.matrix(CV[,-1])%*%ec

    residual=residual+enveff
    }
    
    #Simulating  phenotype
    y=effect+residual+cp
    # print("!!!")
    if(orientation=="col") myY=cbind(as.data.frame(GD[,1]),as.data.frame(y))
    if(orientation=="row") myY=cbind(NA,as.data.frame(y))
    colnames(myY)=c("Taxa","Sim")
    #Convert to category phenotype
    if(category>1){
      myQuantile =(0:category)/category
      y.num= myY[,2]
      cutoff = stats::quantile(y.num, myQuantile)
      y.cat= .bincode(y.num,cutoff,include.lowest = T)
      myY[,2]=y.cat
    }
    
    #Binary phenotype
    if(category==0){
      #Standardization
      #print("Binary phenotype")
      #print(mean(effect))
      #print(sqrt(effectvar))
      #print(dim(effect))
      x=(effect-mean(effect))
      x=x/as.numeric(sqrt(effectvar))
      myF=GAPIT.BIPH(x,h2=h2,r=r)
      p=stats::runif(n)
      index=p<myF
      myY[index,2]=1
      myY[!index,2]=0
    }
    
    #print("Phenotype simulation accoplished")
    return(list(Y=myY,u=effect,i=cp,e=residual,QTN.position=QTN.position,effect=addeffect))
  } #enf of phenotype simulation function
#=============================================================================================
jiabowang/GAPIT3 documentation built on March 6, 2025, 2:21 a.m.