GIC.FuncompCGL: GIC cirterion selection for FuncompCGL

Description Usage Arguments Value Examples

Description

Calculate GIC for compCL, return value of lam.

Usage

1
2
3
GIC.FuncompCGL(y, X, Zc = NULL, ref = NULL, lam = NULL, nlam = 100,
  W = rep(1, times = p - length(ref)), k = 4:10, outer_maxiter = 1e+06,
  ...)

Arguments

y

a vector of response variable.

X

a data frame of longitudinal compositinal predictors with number p, subject ID and time variable. Order of subject ID should be the same as that of y. If df k is a scalar, X could be the matrix with dimension n*(k*p - length(ref)) after integral.

Zc

A design matrix for control variables, could be missing. Default is NULL. No penalty is imposed.

ref

reference variable. If ref is set to a scalar between [1,p], log-contract method is applied with the variable ref as baseline. If ref = NULL (default value), constrained group lasso method is applied

lam

a user supplied lambda sequence. Typically, by leaving this option unspecified users can have the program compute its own lam sequence based on nlam and lambda.factor If lam is provided but a scaler, lam sequence is also created starting from lam. Supplying a value of lambda overrides this. It is better to supply a decreasing sequence of lambda values, if not, the program will sort user-defined lambda sequence in decreasing order automatically.

nlam

the length of lam sequence - default is 100.

W

a vector in length of p (the total number of groups), matrix with dimension p1*p1 or character specifying function used to calculate inverted weight matrix for each group.

  • If vector, works as penalty factor. Separate penalty weights can be applied to each group of beta'ss. to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and results in that group always being included in the model.

  • If matrix, a block diagonal matrix. Diagonal elements are inverted weights matrics for each group.

  • if character, user should provide the function for inverted weights matrics.

Default value is rep(1, times = p).

k

a vector or scalar consists of df for basis - default is 4:10.

outer_maxiter

maximun munber of loops allowed for Augmented Lanrange method.

...

other arguments that could be passed to FuncompCL.

Value

an object of class GIC.FuncompCGL is returned.

Funcomp.CGL.fit

a list, length of k, of fitted FuncompCGL object for the full data. objects with S3 calss FuncompCGL

lam

the values of lam used in the fits

MSE

matrix of mean squared error with size k by nlam (the length of actually used lambda sequence, migth pre-stop by dfmax or pfmax). MSE is equivalent to likelihood under normal error model.
Could be edited for other linkage.

Nzero

a k by nlam matrix for Nzero group cut-off by cut_off and lower_tri

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
df_beta = 5
p = 30 #30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[3, ] <- c(-1, 0, 0, 0, -0.5) #c(-0.5, 0, 0, 0, -0.5)
beta_C_true[1, ] <- c(1, 0, 1 , 0, -0.5) #c(0.5, 0, 1 , 0, -0.5)
beta_C_true[2, ] <- c(0, 0,  -1,  0,  1)

nfolds = 10
k_list <- c(4,5,6)
n_train = 100 #100
n_test = 500

Data <- Model2(n = n_train, p = p, m = 0, intercept = TRUE,
               SNR = 3, sigma = 3,
               rho_X = 0, rho_W = 0,
               Corr_X = "CorrCS", Corr_W = "CorrAR",
               df_W = 5, df_beta = df_beta,
               ns = 20, obs_spar = 1, theta.add = FALSE, #c(0,0,0),
               beta_C = as.vector(t(beta_C_true)))
y <- drop(Data$data$y)
n <- length(y)
X <- Data$data$Comp
Zc <- Data$data$Zc
intercept <- Data$data$intercept
m <- ifelse(is.null(Zc), 0, dim(Zc)[2]) #+ as.integer(intercept)
m1 <- m + as.integer(intercept)
sseq <- Data$basis.info[,1]
beta_C.true <- matrix(Data$beta[1:(p*(df_beta))],
                      nrow = p, ncol = df_beta, byrow = TRUE)
beta_curve.true <- Data$basis.info[,-1] %*% t(beta_C.true)
Non_zero.true <- (1:p)[apply(beta_C.true, 1, function(x) max(abs(x)) > 0)]
foldid <- sample(rep(seq(nfolds), length = n))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Model2, arg_list)
y_test <- drop(Test$data$y)

GIC_arg <- list(basis_fun = "bs", degree = 3, sseq = Data$basis.info[, 1])

# y = y
# X = X
# Zc = Zc
# intercept = intercept
# W = rep(1, p)
# k = k_list
# nfolds = 10
# trim = 0
# tol = 0
# inner_eps = 1e-6
# inner_maxiter = 1E3
# dfmax = 20
# lambda.factor = 1e-20
# mu_ratio = 1
# outer_eps = 1e-6
# keep = TRUE
# Trange = c(0,1)



GIC_m1 <- GIC.FuncompCGL( y = y, X = X, Zc = Zc, ref = NULL,
                          inner_eps = 1e-8, outer_eps = 1e-8, tol = 1e-8,
                          k = k_list)

temp <- get.GIC(p = p, df_list = k_list, lower_tri = 0.01,
                GIC_obj = GIC_m1, GIC_arg = GIC_arg,
                cut_type = "Strict", GIC_type = "GIC1",
                method_type = "cgl", refit = FALSE)
GIC_curve <- temp$GIC_curve
k_opt <- temp$k_opt
beta_GIC <- temp$beta

plot.args = list(x = seq(length(GIC_m1$lam)), #GIC_m1$lam, #log(GIC_m1$lam),
                 y = GIC_curve[1, ],
                 ylim = range(GIC_curve),
                 xlab= "lambda Index",#"lambda", #"log(lambda)",
                 ylab="GIC",
                 type="n")
#do.call("plot",plot.args)
# for(i in 1:length(k_list)) {
#
#   points(x = seq(length(GIC_m1$lam)), #GIC_m1$lam, #log(GIC_m1$lam),
#          y = GIC_curve[i, ], col = rainbow(length(k_list))[i])
#   text(length(GIC_m1$lam), #tail(log(GIC_m1$lam), 1),
#        GIC_curve[i, length(GIC_m1$lam)], labels=paste(k_list[i]),
#        cex= 1, pos= 4, col = rainbow(length(k_list))[i])
# }
# axis(3, at = pretty(seq(length(GIC_m1$lam))), labels = rev(pretty(GIC_m1$lam)))
# loc  = which(GIC_curve == min(GIC_curve), arr.ind = TRUE)




beta_C <- matrix(beta_GIC[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C) , "\r\n")
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))
do.call("plot",plot.args)
for(i in 1:length(k_list)) {
  points(x = seq(length(GIC_m1$lam)), #log(GIC_m1$lam),
         y = GIC_curve[i, ], col = rainbow(length(k_list))[i], pch = seq(length(k_list))[i])
  text(length(GIC_m1$lam), #tail(log(GIC_m1$lam), 1),
       GIC_curve[i, length(GIC_m1$lam)], labels=paste(k_list[i]),
       cex= 1, pos= 4, col = rainbow(length(k_list))[i])
}
#axis(3, at = pretty(seq(length(GIC_m1$lam))), labels = rev(pretty(GIC_m1$lam)))

matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])#,
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))
plot(apply(abs(beta_C),1,sum))
text(seq(length(GIC_m1$lam))[which(apply(abs(beta_C),1,sum) > 0)], #tail(log(GIC_m1$lam), 1),
     apply(abs(beta_C),1,sum)[which(apply(abs(beta_C),1,sum) > 0)],
     labels=paste(seq(length(GIC_m1$lam))[which(apply(abs(beta_C),1,sum) > 0)]),
     cex= 1, pos= 4)

title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method cgl"), outer=TRUE, line = -2)
par(mfrow=c(1,1))

##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
  ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero

cgl_GIC <- list()
MSE <- temp$MSE[temp$k_opt - k_list[1] + 1, temp$lam_loc]
R_sqr <- 1 - MSE * length(y) / crossprod(y -  mean(y))

obj <- FuncompCGL(y = y_test, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta_GIC)^2) / length(y_test)
cgl_GIC$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)

cgl_GIC$Non.zero_cut <- Non.zero
cgl_GIC <- c(cgl_GIC,
             ERROR_fun(beta_fit = beta_GIC, beta_true = Data$beta,
                       basis_fit = B, basis_true = Data$basis.info[,-1],
                       sseq = Data$basis.info[, 1],
                       m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
             k = k_opt)
cgl_GIC$coef <- list(beta_C = beta_C, beta_c = tail(beta_GIC, m1))

## Not run: 

GIC_m2 <- GIC.FuncompCGL( y = y, X = X, Zc = Zc, ref = NULL,
                          outer_eps = 1e-8, mu_ratio = 0, tol = 1e-8,
                          k = k_list)
temp <- get.GIC(p = p, df_list = k_list, lower_tri = 0.01,
                GIC_obj = GIC_m1, GIC_arg = GIC_arg,
                cut_type = "Strict", GIC_type = "GIC1",
                method_type = "naive", refit = FALSE)
GIC_curve <- temp$GIC_curve
k_opt <- temp$k_opt
beta_GIC <- temp$beta

plot.args = list(x = seq(length(GIC_m2$lam)), #GIC_m2$lam, #log(GIC_m2$lam),
                 y = GIC_curve[1, ],
                 ylim = range(GIC_curve),
                 xlab= "lambda Index",#"lambda", #"log(lambda)",
                 ylab="GIC",
                 type="n")
# do.call("plot",plot.args)
#
# for(i in 1:length(k_list)) {
#
#   points(x = seq(length(GIC_m2$lam)), #GIC_m2$lam, #log(GIC_m2$lam),
#          y = GIC_curve[i, ], col = rainbow(length(k_list))[i])
#   text(length(GIC_m2$lam), #tail(log(GIC_m2$lam), 1),
#        GIC_curve[i, length(GIC_m2$lam)], labels=paste(k_list[i]),
#        cex= 1, pos= 4, col = rainbow(length(k_list))[i])
# }
# axis(3, at = pretty(seq(length(GIC_m2$lam))), labels = rev(pretty(GIC_m2$lam)))

beta_C <- matrix(beta_GIC[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C), "\r\n")
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))

do.call("plot",plot.args)
for(i in 1:length(k_list)) {
  points(x = seq(length(GIC_m2$lam)), #GIC_m2$lam, #log(GIC_m2$lam),
         y = GIC_curve[i, ], col = rainbow(length(k_list))[i], pch = seq(length(k_list))[i])
  text(length(GIC_m2$lam), #tail(log(GIC_m2$lam), 1),
       GIC_curve[i, length(GIC_m2$lam)], labels=paste(k_list[i]),
       cex= 1, pos= 4, col = rainbow(length(k_list))[i])
}
#axis(3, at = pretty(seq(length(GIC_m2$lam))), labels = rev(pretty(GIC_m2$lam)))

matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])#,
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))


plot(apply(abs(beta_C),1,sum))
text(seq(length(GIC_m2$lam))[which(apply(abs(beta_C),1,sum) > 0)], #tail(log(GIC_m2$lam), 1),
     apply(abs(beta_C),1,sum)[which(apply(abs(beta_C),1,sum) > 0)],
     labels=paste(seq(length(GIC_m2$lam))[which(apply(abs(beta_C),1,sum) > 0)]),
     cex= 1, pos= 4)

title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method naive"), outer=TRUE, line = -2)

par(mfrow=c(1,1))


##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
  ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero

naive_GIC <- list()
MSE <- temp$MSE[temp$k_opt - k_list[1] + 1, temp$lam_loc]
R_sqr <- 1 - MSE * length(y) / crossprod(y -  mean(y))
obj <- FuncompCGL(y = y_test, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta_GIC)^2) / length(y_test)
naive_GIC$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)
naive_GIC$Non.zero_cut <- Non.zero
naive_GIC <- c(naive_GIC,
               ERROR_fun(beta_fit = beta_GIC, beta_true = Data$beta,
                         basis_fit = B, basis_true = Data$basis.info[,-1],
                         sseq = Data$basis.info[, 1],
                         m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
               k = k_opt)
naive_GIC$coef <- list(beta_C = beta_C, beta_c = tail(beta_GIC, m1))



GIC_m3 <- GIC.FuncompCGL(y = y, X = X, Zc = Zc, ref = sample(4:p, 1), #sample(1:p, 1),
                         outer_eps = 1e-8, mu_ratio = 0, tol = 1e-8,
                         k = k_list)
temp <- get.GIC(p = p, df_list = k_list, lower_tri = 0.01,
                GIC_obj = GIC_m1, GIC_arg = GIC_arg,
                cut_type = "Strict", GIC_type = "GIC1",
                method_type = "base", refit = FALSE)
GIC_curve <- temp$GIC_curve
k_opt <- temp$k_opt
beta_GIC <- temp$beta
ref = GIC_m3$Funcomp.CGL.fit[[1]]$ref
beta_GIC <-  c(beta_GIC1[ifelse(ref==1, 0, 1):((ref-1)*k_opt)],
               -colSums(matrix(beta_GIC1[1:((p-1)*k_opt)], byrow = TRUE, ncol = k_opt)),
               beta_GIC1[((ref-1)*k_opt+1):(length(beta_GIC1))])

plot.args = list(x = seq(length(GIC_m3$lam)), #GIC_m3$lam, #log(GIC_m3$lam),
                 y = GIC_curve[1, ],
                 ylim = range(GIC_curve),
                 xlab= "lambda index",#"lambda", #"log(lambda)",
                 ylab="GIC",
                 type="n")
# do.call("plot",plot.args)
#
# for(i in 1:length(k_list)) {
#
#   points(x = seq(length(GIC_m3$lam)), #GIC_m3$lam, #log(GIC_m3$lam),
#          y = GIC_curve[i, ], col = rainbow(length(k_list))[i])
#   text(length(GIC_m3$lam), #tail(log(GIC_m3$lam), 1),
#        GIC_curve[i, length(GIC_m3$lam)], labels=paste(k_list[i]),
#        cex= 1, pos= 4, col = rainbow(length(k_list))[i])
#
# }
# axis(3, at = seq(1, length(GIC_m3$lam), length.out = 10),
#      labels = rev(GIC_m3$lam[seq(1, length(GIC_m3$lam), length.out = 10)]) )
# axis(3, at = pretty(seq(length(GIC_m3$lam))),
#         labels = rev(pretty(GIC_m3$lam, n = length(pretty(seq(length(GIC_m3$lam))))))
#      )



beta_C <- matrix(beta_GIC[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C), "\r\n")
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))
do.call("plot",plot.args)
for(i in 1:length(k_list)) {
  points(x = seq(length(GIC_m3$lam)), #log(GIC_m3$lam),
         y = GIC_curve[i, ], col = rainbow(length(k_list))[i], pch = seq(length(k_list))[i])
  text(length(GIC_m3$lam), #tail(log(GIC_m3$lam), 1),
       GIC_curve[i, length(GIC_m3$lam)], labels=paste(k_list[i]),
       cex= 1, pos= 4, col = rainbow(length(k_list))[i])
}
#axis(3, at = pretty(seq(length(GIC_m3$lam))), labels = rev(pretty(GIC_m3$lam)))
matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))
plot(apply(abs(beta_C),1,sum))
text(seq(length(GIC_m3$lam))[which(apply(abs(beta_C),1,sum) > 0)], #tail(log(GIC_m3$lam), 1),
     apply(abs(beta_C),1,sum)[which(apply(abs(beta_C),1,sum) > 0)],
     labels=paste(seq(length(GIC_m3$lam))[which(apply(abs(beta_C),1,sum) > 0)]),
     cex= 1, pos= 4)
title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method base",  ", ref=", ref), outer=TRUE, line = -2)
par(mfrow=c(1,1))
##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
  ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero


base_GIC <- list()
MSE <- temp$MSE[temp$k_opt - k_list[1] + 1, temp$lam_loc]
R_sqr <- 1 - MSE * length(y) / crossprod(y -  mean(y))
obj <- FuncompCGL(y = y_test, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta_GIC)^2) / length(y_test)
base_GIC$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)
base_GIC$Non.zero_cut <- Non.zero
base_GIC <- c(base_GIC,
              ERROR_fun(beta_fit = beta_GIC, beta_true = Data$beta,
                        basis_fit = B, basis_true = Data$basis.info[,-1],
                        sseq = Data$basis.info[, 1],
                        m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
              k = k_opt)
base_GIC$coef <- list(beta_C = beta_C, beta_c = tail(beta_GIC, m1))


## End(Not run)

jiji6454/Rpac_compReg documentation built on May 31, 2019, 5:01 a.m.