cv.FuncompCGL: Cross-validation for FuncompCGL

Description Usage Arguments Value Examples

Description

Does nfolds cross-validation for FuncompCGL, return value of lam and df k. The function is modified based on the cv function from glmnet package

Usage

1
2
3
4
5
6
cv.FuncompCGL(y, X, Zc = NULL, lam = NULL, ref = NULL,
              W = rep(1,times = p - length(ref)),
              k = 4:10,
              foldid, nfolds = 10, nlam = 100,
              trim = 0, outer_maxiter = 1e+06,
              keep = FALSE, ...)

Arguments

y

a vector of response variable.

X

a data frame of longitudinal compositinal predictors with number p, subject ID and time variable. Order of subject ID should be the same as that of y. If df k is a scalar, X could be the matrix with dimension n*(k*p - length(ref)) after integral.

Zc

A design matrix for control variables, could be missing. Default is NULL. No penalty is imposed.

lam

a user supplied lambda sequence. Typically, by leaving this option unspecified users can have the program compute its own lam sequence based on nlam and lambda.factor If lam is provided but a scaler, lam sequence is also created starting from lam. Supplying a value of lambda overrides this. It is better to supply a decreasing sequence of lambda values, if not, the program will sort user-defined lambda sequence in decreasing order automatically.

ref

reference variable. If ref is set to a scalar between [1,p], log-contract method is applied with the variable ref as baseline. If ref = NULL (default value), constrained group lasso method is applied

W

a vector in length of p (the total number of groups), matrix with dimension p1*p1 or character specifying function used to calculate inverted weight matrix for each group.

  • If vector, works as penalty factor. Separate penalty weights can be applied to each group of beta'ss. to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and results in that group always being included in the model.

  • If matrix, a block diagonal matrix. Diagonal elements are inverted weights matrics for each group.

  • if character, user should provide the function for inverted weights matrics.

Default value is rep(1, times = p).

k

a vector or scalar consists of df for basis - default is 4:10.

foldid

an optional vector of values between 1 and nfolds identifying what fold each observation is in. If supplied, nfold can be missing.

nfolds

number of folds - default is 10. Smallest value allowable is nfolds=3.

nlam

the length of lam sequence - default is 100.

trim

a scaler specifying percentage to be trimmed off for prediction error - default is 0.
This feature could be deleted later.

outer_maxiter

maximun munber of loops allowed for Augmented Lanrange method.

keep

If keep=TRUE, a prevalidated array is returned containing fitted values for each observation, of lambda and k. This means these fits are computed with this observation and the rest of its fold omitted. The folid vector is also returned. Default is keep=FALSE

...

other arguments that can be passed to FuncompCGL.

Value

a list

Funcomp.CGL.fit

a list, length of k, of fitted FuncompCGL object for the full data. objects with S3 calss FuncompCGL

lam

the values of lam used in the fits

Ftrim

a list for cross-validation result with trim = 0.

  • cvm the mean cross-validated error without trimming - a matrix of length(k)*length(lam)

  • cvsd estimate of standard error of cvm without trimming- a matrix of length(k)*length(lam)

  • cvup a matrix of length(k)*length(lam)

  • cvlo a matrix of length(k)*length(lam)

  • lam.min The optimal value of k and lam that gives minimum cross validation error cvm without trimming

  • lam.1se The optimal value of k and lam for "lam.1se" without trimming

Ttrim

a list for cross-validation result with trimming (if trim provided). Same as these for Ftrim.
This feature could be deleted later.

fit.preval, foldid

fitting matrix and foldid. Only keept when keep=TRUE.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
df_beta = 5
p = 30
beta_C_true = matrix(0, nrow = p, ncol = df_beta)
beta_C_true[3, ] <- c(-1, 0, 0, 0, -0.5)
beta_C_true[1, ] <- c(1, 0, 1 , 0, -0.5)
beta_C_true[2, ] <- c(0, 0,  -1,  0,  1)

nfolds = 10
k_list <- c(4,5)
n_train = 100
n_test = 500

Data <- Model2(n = 100, p = p, m = 0, intercept = TRUE,
               SNR = 2, sigma = 2,
               rho_X = 0, rho_W = 0.5,
               Corr_X = "CorrCS", Corr_W = "CorrAR",
               df_W = 5, df_beta = df_beta,
               ns = 20, obs_spar = 1, theta.add = FALSE, #c(0,0,0),
               beta_C = as.vector(t(beta_C_true)))
y <- drop(Data$data$y)
n <- length(y)
X <- Data$data$Comp
Zc <- Data$data$Zc
intercept <- Data$data$intercept
m <- ifelse(is.null(Zc), 0, dim(Zc)[2]) #+ as.integer(intercept)
m1 <- m + as.integer(intercept)
sseq <- Data$basis.info[,1]
beta_C.true <- matrix(Data$beta[1:(p*(df_beta))],
                      nrow = p, ncol = df_beta, byrow = TRUE)
beta_curve.true <- Data$basis.info[,-1] %*% t(beta_C.true)
Non_zero.true <- (1:p)[apply(beta_C.true, 1, function(x) max(abs(x)) > 0)]
foldid <- sample(rep(seq(nfolds), length = n))

arg_list <- as.list(Data$call)[-1]
arg_list$n <- n_test
Test <- do.call(Model2, arg_list)
y_test <- drop(Test$data$y)

# y = y
# X = X
# Zc = Zc
# intercept = intercept
# W = rep(1, p)
# k = k_list
# nfolds = 10
# trim = 0
# tol = 0
# inner_eps = 1e-6
# inner_maxiter = 1E3
# dfmax = 20
# lambda.factor = 1e-20
# mu_ratio = 1
# outer_eps = 1e-6
# keep = TRUE
# Trange = c(0,1)


rule <- "lam.min"
# cv_cgl, Constrained group lasso
cv_cgl <-  cv.FuncompCGL(y = y, X = X, Zc = Zc, intercept = intercept,
                         W = rep(1, p), #W = function(x){ diag( 1 / apply(x, 2, sd) ) },
                         k = k_list, trim = 0,
                         foldid = foldid, #nfolds = 10,
                         tol = 0, inner_eps = 1e-6, inner_maxiter = 1E3,
                         dfmax = 30, lambda.factor = 1e-3,
                         mu_ratio = 1, outer_eps = 1e-6,
                         keep = TRUE, Trange = c(0,1)
                         #lam = c(exp(seq(log(0.01),log(0.00001),length=100)),0)
                         )
plot(cv_cgl,k_list = k_list)
cv_cgl$Ftrim[c("lam.min", "lam.1se")]
beta <-  coef(cv_cgl, trim = FALSE, s = rule)
k_opt <- (length(drop(beta)) - (m + 1)) / p
#cv_cgl$Funcomp.CGL.fit[[as.character(k_opt)]]


par(mfrow=c(1,4))
plot(cv_cgl,k_list = k_list)
plot(cv_cgl$Funcomp.CGL.fit[[as.character(k_opt)]],
     p = p, k = k_opt, ylab = "L2")
plot(cv_cgl$Ftrim$cvm[k_opt - k_list[1] + 1, ])
title(paste0("k=", k_opt), line = 0.5)
# apply(cv_cgl$Funcomp.CGL.fit[[k_opt - 3]]$beta, 2,
#       function(x, p, k) {
#         #which(abs(x[seq(1, (p-1)*k+1, by = k)])>0),
#         (1:p)[apply(matrix(x[1:(p*k)], byrow = TRUE, nrow = p), 1,
#                     function(x) max(abs(x)) > 0)]
#       },p = p , k = k_opt)
if(k_opt == df_beta) {
  plot(Data$beta, col = "red", pch = 19,
       ylim = range(c(range(Data$beta), range(beta)))) #range(Data$beta))
  abline(v= seq(from = 0, to = (p*df_beta), by = df_beta ))
  abline(h = 0)
  points(beta)
  if(m1 > 0) points(p*df_beta + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
} else {
  plot(beta, ylim = range(c(range(Data$beta), range(beta))) )
  abline(v= seq(from = 0, to = (p*k_opt), by = k_opt ))
  abline(h = 0, col = "red")
  if(m1 > 0) points(p*k_opt + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
}
title(paste0("Method cgl"), outer=TRUE, line = -2)
par(mfrow=c(1,1))

beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C))
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))
plot(cv_cgl) #plot(cv_cgl,k_list = k_list)
matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])#,
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))
plot(apply(abs(beta_C),1,sum))
title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method cgl"), outer=TRUE, line = -2)
par(mfrow=c(1,1))
##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
                 ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero
Non.zero <- apply(beta_C, 1, function(x)
                 ifelse(sum(x^2) > sum(beta_C^2)/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero
## cut by curve
Curve_L2 <- colSums(beta_curve^2)
Curve_L2 <- Curve_L2 - colSums(beta_curve[c(1, nrow(Data$basis.info)), ]^2) / 2
Curve_L2 <- Curve_L2 * (Data$basis.info[2,1] - Data$basis.info[1,1])
plot(Curve_L2)
which(sqrt(Curve_L2) > sqrt(sum(Curve_L2)) / 100)

cgl <- list()
# MSE <- crossprod(y -  cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta) / length(y)
X_train <- cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z, Zc), 1)
MSE <- sum((y -  X_train %*% beta)^2) / length(y)
# R_sqr <- 1 - crossprod(y -  cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta) / crossprod(y -  mean(y))
R_sqr <- sum((y -  X_train %*% beta)^2)
R_sqr <- 1 - R_sqr / crossprod(y -  mean(y))

obj <- FuncompCGL(y = y_test, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
# PE <- sum((Test$data$y - cbind2(cbind(obj$Z, Test$data$Zc), 1) %*% beta)^2)
# / length(drop(Test$data$y))
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta)^2) / length(y_test)
cgl$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)

cgl$Non.zero_cut <- Non.zero
cgl <- c(cgl,
             ERROR_fun(beta_fit = beta, beta_true = Data$beta,
                       basis_fit = B, basis_true = Data$basis.info[,-1],
                       sseq = Data$basis.info[, 1],
                       m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
             k = k_opt)
cgl$coef <- list(beta_C = beta_C, beta_c = tail(beta, m1))

## Not run: 
# naive model
# set mu_raio = 0 to identifying without linear constraints,
# no outer_loop for Lagrange augmented multiplier
# mu_ratio = 0
cv_naive <-  cv.FuncompCGL(y = y, X = X, Zc = Zc, intercept = intercept,
                           W = rep(1, p), #W = function(x){ diag( 1 / apply(x, 2, sd) ) },
                           k = k_list, nfolds = 10, trim = 0,
                           tol = 0, inner_eps = 1e-6, inner_maxiter = 1E3,
                           dfmax = 30, lambda.factor = 1e-3,
                           mu_ratio = 0, outer_eps = 1e-6,
                           keep = FALSE, Trange = c(0,1)
                           #lam = c(exp(seq(log(0.01),log(0.00001),length=100)),0)
)

plot(cv_naive,k_list = k_list)
cv_naive$Ftrim[c("lam.min", "lam.1se")]
beta <-  coef(cv_naive, trim = FALSE, s = rule)
k_opt <- (length(drop(beta)) - (m + 1)) / p
#cv_naive$Funcomp.CGL.fit[[as.character(k_opt)]]


par(mfrow=c(1,4))
plot(cv_naive,k_list = k_list)
plot(cv_naive$Funcomp.CGL.fit[[as.character(k_opt)]],
     p = p, k = k_opt, ylab = "L2")
plot(cv_naive$Ftrim$cvm[k_opt - k_list[1] + 1, ])
title(paste0("k=", k_opt), line = 0.5)
# apply(cv_naive$Funcomp.CGL.fit[[k_opt - 3]]$beta, 2,
#       function(x, p, k) {
#         #which(abs(x[seq(1, (p-1)*k+1, by = k)])>0),
#         (1:p)[apply(matrix(x[1:(p*k)], byrow = TRUE, nrow = p), 1,
#                     function(x) max(abs(x)) > 0)]
#       },p = p , k = k_opt)
if(k_opt == df_beta) {
  plot(Data$beta, col = "red", pch = 19,
       ylim = range(c(range(Data$beta), range(beta)))) #range(Data$beta))
  abline(v= seq(from = 0, to = (p*df_beta), by = df_beta ))
  abline(h = 0)
  points(beta)
  if(m1 > 0) points(p*df_beta + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
} else {
  plot(beta, ylim = range(c(range(Data$beta), range(beta))) )
  abline(v= seq(from = 0, to = (p*k_opt), by = k_opt ))
  abline(h = 0, col = "red")
  if(m1 > 0) points(p*k_opt + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
}
title(paste0("Method naive"), outer=TRUE, line = -2)
par(mfrow=c(1,1))

beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C))
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))
plot(cv_naive) #plot(cv_naive,k_list = k_list)
matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])#,
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))
plot(apply(abs(beta_C),1,sum))
title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method naive"), outer=TRUE, line = -2)
par(mfrow=c(1,1))
##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
                  ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero


naive <- list()
# MSE <- crossprod(y -  cbind2(cbind(cv_naive$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta)
X_train <- cbind2(cbind(cv_naive$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z, Zc), 1)
MSE <- sum((y -  X_train %*% beta)^2)/ length(y)
# R_sqr <- 1 - crossprod(y -  cbind2(cbind(cv_naive$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta) / crossprod(y -  mean(y))
R_sqr <- sum((y -  X_train %*% beta)^2)
R_sqr <- 1 - R_sqr / crossprod(y -  mean(y))

obj <- FuncompCGL(y = Test$data$y, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
# PE <- sum((Test$data$y - cbind2(cbind(obj$Z, Test$data$Zc), 1) %*% beta)^2)
# / length(drop(Test$data$y))
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta)^2) / length(y_test)
naive$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)
naive$Non.zero_cut <- Non.zero
naive <- c(naive,
           ERROR_fun(beta_fit = beta, beta_true = Data$beta,
                     basis_fit = B, basis_true = Data$basis.info[,-1],
                     sseq = Data$basis.info[, 1],
                     m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
           k = k_opt)
naive$coef <- list(beta_C = beta_C, beta_c = tail(beta, m1))



# log contract model
# set reference variable and once ref is set to a scalar in range,
# mu_ratio is set to 0 automatically
# ref = sample(1:p, 1)
cv_base <- cv.FuncompCGL(y = y, X = X, Zc = Zc, intercept = intercept, ref = sample(1:p, 1),
                         W = rep(1, p - 1), #W = function(x){ diag( 1 / apply(x, 2, sd) ) },
                         k = k_list, nfolds = 10, trim = 0,
                         tol = 0, inner_eps = 1e-6, inner_maxiter = 1E3,
                         dfmax = 30, lambda.factor = 1e-3,
                         mu_ratio = 0, outer_eps = 1e-6,
                         keep = FALSE, Trange = c(0,1)
                         #,lam = c(exp(seq(log(0.01),log(0.00001),length=100)),0)
)

plot(cv_base,k_list = k_list)
cv_base$Ftrim[c("lam.min", "lam.1se")]
beta <-  coef(cv_base, trim = FALSE, s = rule)
k_opt <- (length(drop(beta)) - (m + 1)) / p
#cv_base$Funcomp.CGL.fit[[as.character(k_opt)]]


par(mfrow=c(1,4))
plot(cv_base,k_list = k_list)
plot(cv_base$Funcomp.CGL.fit[[as.character(k_opt)]],
     p = p, k = k_opt, ylab = "L2")
plot(cv_base$Ftrim$cvm[k_opt - k_list[1] + 1, ])
title(paste0("k=", k_opt), line = 0.5)
# apply(cv_base$Funcomp.CGL.fit[[k_opt - 3]]$beta, 2,
#       function(x, p, k) {
#         #which(abs(x[seq(1, (p-1)*k+1, by = k)])>0),
#         (1:p)[apply(matrix(x[1:(p*k)], byrow = TRUE, nrow = p), 1,
#                     function(x) max(abs(x)) > 0)]
#       },p = p , k = k_opt)
if(k_opt == df_beta) {
  plot(Data$beta, col = "red", pch = 19,
       ylim = range(c(range(Data$beta), range(beta)))) #range(Data$beta))
  abline(v= seq(from = 0, to = (p*df_beta), by = df_beta ))
  abline(h = 0)
  points(beta)
  if(m1 > 0) points(p*df_beta + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
} else {
  plot(beta, ylim = range(c(range(Data$beta), range(beta))) )
  abline(v= seq(from = 0, to = (p*k_opt), by = k_opt ))
  abline(h = 0, col = "red")
  if(m1 > 0) points(p*k_opt + 1:m1, tail(Data$beta, m1),
                    col = "blue", pch = 19)
}
title(paste0("Method baseline=", cv_base$Funcomp.CGL.fit[[1]]$ref), outer=TRUE, line = -2)
par(mfrow=c(1,1))

beta_C <- matrix(beta[1:(p*k_opt)], byrow = TRUE, nrow = p)
cat("colSums:", colSums(beta_C))
#Non.zero <- which(abs(beta_C[,1]) > 0)
Non.zero <- apply(beta_C, 1, function(x) ifelse(max(abs(x)) >0, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
cat("None zero groups:", Non.zero)
#vet(beta, p = p, k = k_opt)

par(mfrow=c(1,4))
plot(cv_base) #plot(cv_base,k_list = k_list)
matplot(sseq, beta_curve.true,
        ylab = "coeffcients curve", xlab = "TIME", #main = "TRUE",
        ylim = range(Data$beta[1:(p*df_beta)]),
        type = "l")
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("TRUE", line = 0.5)
text(0, beta_curve.true[1, Non_zero.true], labels = paste(Non_zero.true))

B <- splines::bs(Data$basis.info[,1], df = k_opt, intercept = TRUE)
beta_curve <- B %*% t(beta_C)
matplot(sseq, beta_curve,
        ylab = "coef", xlab = "TIME", #main = "ESTI",
        ylim = range(Data$beta[1:(p*df_beta)])#,
        #type = "l"
)
abline(a = 0, b = 0, col = "grey", lwd = 2)
title("Estimate", line = 0.5)
text(0, beta_curve[1, Non.zero], labels = paste(Non.zero))
text(tail(sseq, 1), beta_curve[dim(beta_curve)[1], Non.zero], labels = paste(Non.zero))
plot(apply(abs(beta_C),1,sum))
title(paste0("k=", k_opt), line = 0.5)
title(paste0("Method baseline=", cv_base$Funcomp.CGL.fit[[1]]$ref), outer=TRUE, line = -2)
par(mfrow=c(1,1))
##set a cutoff when you compute nonzeros
Non.zero <- apply(beta_C, 1, function(x)
                 ifelse(sqrt(sum(x^2)) > sqrt(sum(beta_C^2))/100, TRUE, FALSE))
Non.zero <- (1:p)[Non.zero]
Non.zero


base <- list()
# MSE <- crossprod(y -  cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta) / length(y)
X_train <- cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z, Zc), 1)
MSE <- crossprod(y -  X_train %*% beta) / length(y)
# R_sqr <- 1 - crossprod(y -  cbind2(cbind(cv_cgl$Funcomp.CGL.fit[[k_opt - k_list[1]+ 1]]$Z,
# Zc), 1) %*% beta) / crossprod(y -  mean(y))
R_sqr <- crossprod(y -  X_train %*% beta)
R_sqr <- 1 - R_sqr / crossprod(y -  mean(y))

obj <- FuncompCGL(y = Test$data$y, X = Test$data$Comp, k = k_opt, nlam = 1, outer_maxiter = 0)
# PE <- sum((Test$data$y - cbind2(cbind(obj$Z, Test$data$Zc), 1) %*% beta)^2)
# / length(drop(Test$data$y))
X_test <- cbind2(cbind(obj$Z, Test$data$Zc), 1)
PE <- sum((y_test - X_test %*% beta)^2) / length(y_test)
base$pred_error <- c(MSE = MSE, PE = PE, Rsqr_train = R_sqr)

base$Non.zero_cut <- Non.zero
base <- c(base,
          ERROR_fun(beta_fit = beta, beta_true = Data$beta,
                    basis_fit = B, basis_true = Data$basis.info[,-1],
                    sseq = Data$basis.info[, 1],
                    m = m, p = p, Nzero_group = length(Non_zero.true), tol = 0),
          k = k_opt)
base$coef <- list(beta_C = beta_C, beta_c = tail(beta, m1))


## End(Not run)

jiji6454/Rpac_compReg documentation built on May 31, 2019, 5:01 a.m.