#' @title Fit a Bimodal Gaussian Distribution
#' @description Fit a bimodal gaussian distribution to a set of observations.
#' @param x a named numeric vector of cells/observations or a matrix of genes X cells (variables X observations). If the latter, the column means are first computed.
#' @param prob a numeric value >= 0 and <= 1; the minimum posterior probability required for an observation to be assigned to a mode. Default: 0.95
#' @param coverage the fraction of observations that must have a posterior probability higher than <prob> to one of two modes in order for the distribution to qualify as bimodal. Default: 0.8
#' @param size the minimum number of observations that must be assigned to a mode in order for the distribution to qualify as bimodal. Default: 10
#' @param assign if set to TRUE, returns a list of length two containing the vector names that were assigned to each mode. Default: FALSE
#' @param boolean if set to TRUE, returns a boolean value indicating whether the distribution is bimodal. Default: FALSE
#' @param verbose print progress messages. Default: TRUE
#' @param maxit the maximum number of iterations. Default: 5000
#' @param maxrestarts the maximum number of restarts allowed. See \code{\link[mixtools]{normalmixEM}} for details. Default: 100
#' @param bySampling logical; if TRUE, the function uses a bootstrapping method to subsample values and identify the two modes iteratively. This method is more sensitive to differing mode sizes, so will be useful if you believe one group to be much smaller than the other. Default: TRUE
#' @param nsamp the number of bootstrap replicates.
#' @return The posterior probabilities of each observation to one of two modes. If boolean = TRUE, return a boolean value indicating whether bimodality was found. If assign = TRUE, return a list of length two with the observations (IDs) in each mode.
#' @examples
#' cna = infercna(m = useData(), refCells = refCells)
#' # Malignant cells only (remove columns corresponding to refCells)
#' cna = cna[, !colnames(cna) %in% unlist(refCells)]
#' cnaByChr = splitGenes(cna, by = 'chr')
#' sapply(cnaByChr, fitBimodal, assign = TRUE)
#' sapply(cnaByChr, fitBimodal, boolean = TRUE, coverage = 0.5)
#' @seealso
#' \code{\link[mixtools]{normalmixEM}}
#' @rdname fitBimodal
#' @export
#' @importFrom stats setNames
#' @importFrom mixtools normalmixEM
#' @importFrom dplyr mutate
fitBimodal = function(x,
prob = 0.95,
coverage = 0.8,
size = 10,
assign = FALSE,
boolean = FALSE,
verbose = TRUE,
maxit = 5000,
maxrestarts = 100,
bySampling = FALSE,
nsamp = 2000,
...) {
if (bySampling) {
out = .fitBimodalBySampling(x = x,
tries = nsamp,
prob = prob,
coverage = coverage,
size = size,
verbose = verbose,
maxit = maxit,
maxrestarts = maxrestarts,
force.tries = FALSE,
...)
return(out)
}
if (!is.null(dim(x))) x = colMeans(x)
if (length(x) < size * 2) {
stop('Number of observations is too small for 2 modes >= ' , size)
}
obj = suppressWarnings(nor1mix::norMixEM(x, m = 2, maxit = maxit))
if (isFALSE(attr(obj, 'converged'))) {
if (verbose) message('No bimodal distribution found.')
return(FALSE)
}
result = nor1mix::estep.nm(x, obj)
passed = result >= prob
failed = is.null(dim(passed)) || ncol(passed) != 2 || nrow(passed) != length(x)
if (failed) {
if (verbose) message('No bimodal distribution found.')
return(FALSE)
}
if (any(colSums(passed) < size)) {
if (verbose) message('At least one mode contains < ', size, ' obs.')
return(FALSE)
}
observed = (sum(colSums(passed))) / length(x)
if (observed < coverage) {
if (verbose) message('Less than ', coverage * 100, '% of obs. could be assigned to a mode.')
return(FALSE)
}
if (verbose) message('Success!')
if (assign) {
L = sapply(as.data.frame(passed), function(col) names(x)[which(col)], simplify = F)
return(stats::setNames(L, letters[1:length(L)]))
}
if (boolean) return(TRUE)
result
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.