#' Euler-Maruyama method birth-death solution for a stochastic differential equation.
#'
#' \code{birth_death_stochastic} solves a multi-dimensional differential equation using a birth-death process, applying the Euler-Maruyama method. A reality constraint is applied so the variables can never be zero.
#' @param birth_rate The 1 or multi dimensional system of equations for the birth rate, written in formula notation as a vector (i.e. c(dx ~ f(x,y), dy ~ g(x,y)))
#' @param death_rate The 1 or multi dimensional system of equations for the death rate of the differential equation, written in formula notation as a vector (i.e. c(dx ~ f(x,y), dy ~ g(x,y)))
#' @param initial_condition (REQUIRED) Listing of initial conditions (we can only do one initial condition)
#' @param parameters The values of the parameters we are using
#' @param t_start The starting time point (defaults to t = 0)
#' @param deltaT The timestep length (defaults to 1)
#' @param n_steps The number of timesteps to compute solution (defaults to n_steps = 1)
#' @param D diffusion coefficient for the stochastic part of the SDE
#' @return A tidy of data frame the solutions
#' @import dplyr
#' @import purrr
#' @importFrom expm sqrtm
#' @importFrom stats as.formula rnorm
#' @import formula.tools
#' @import tidyr
#' @export
birth_death_stochastic <- function(birth_rate,death_rate,initial_condition,parameters=NULL,t_start=0,deltaT=1,n_steps=1,D=1) {
# Add time to our condition vector, identify the names
curr_vec <- c(initial_condition,t=t_start)
vec_names <- names(curr_vec)
n_vars <- length(vec_names) # Number of variables
# Make the mean and error equation (we do one less because we added t to curr_vec)
mean_eq <- vector("list",length=n_vars-1)
std_eq <- vector("list",length=n_vars-1)
# Identify the mean and the variance
for (i in seq_along(birth_rate)) {
mean_eq[[i]] <- stats::as.formula(
paste0(
as.character(formula.tools::lhs(birth_rate[i])),
"~",
as.character(formula.tools::rhs(birth_rate[i])),
"-",
as.character(formula.tools::rhs(death_rate[i])) )
)
std_eq[[i]] <- as.formula(
paste0(
as.character(formula.tools::lhs(birth_rate[i])),
"~ ",
as.character(formula.tools::rhs(birth_rate[i])),
"+",
as.character(formula.tools::rhs(death_rate[i])) )
)
}
time_eq <- c(dt ~ 1) # This is an equation to keep track of the dt
new_mean_eq <- c(mean_eq,time_eq) %>%
formula.tools::rhs()
time_eq_stoc <- c(dt~0)
new_std_eq <- c(std_eq,time_eq_stoc) %>%
formula.tools::rhs()
# Start building the list
out_list <- vector("list",length=n_steps)
out_list[[1]] <- curr_vec
for(i in 2:n_steps) {
# Define the list of inputs to the rate equation
in_list <- c(parameters,curr_vec) %>% as.list()
curr_mean <-sapply(new_mean_eq,FUN=eval,envir=in_list) %>%
purrr::set_names(nm =vec_names)
curr_std <-sapply(new_std_eq,FUN=eval,envir=in_list) %>%
purrr::set_names(nm =vec_names)
# For a system of equations we need to compute the matrix square root. This should work even for systems where we have one equation
sqrt_matrix <- (Re(expm::sqrtm(curr_std[1:(n_vars-1)] %*% t(curr_std[1:(n_vars-1)])) ))
# Pad a row of zeros for the time variable (it is NOT stochastic)
s_rev <- rbind(cbind(sqrt_matrix,0),0)
# This is our update equation
out_compute <- (s_rev**sqrt(2*D*deltaT)) %*% stats::rnorm(n_vars) %>%
purrr::set_names(nm =vec_names)
# Now we add them together and update
v3 <- c(curr_vec, curr_mean*deltaT,out_compute)
curr_vec <- tapply(v3, names(v3), sum)
curr_vec[curr_vec<0] <- 0 # Reality constraint forcing all variables to be positive
out_list[[i]] <- curr_vec
}
# Accumulate as we go and build up the data frame. This seems like magic.
out_results <- out_list %>%
dplyr::bind_rows() %>%
dplyr::relocate(t) # Put t at the start
return(out_results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.