ranger_importances: ranger_importances

Description Usage Arguments Value Functions Examples

View source: R/ranger_utils.R

Description

Calculates ranger-based variable importances for data frames and Seurat objects

Usage

1
2
3
4
5
6
7
ranger_importances(x, ...)

FindAllMarkers_ranger.Seurat(
  object,
  genes_use = Seurat::VariableFeatures(object),
  ...
)

Arguments

...

additional arguments to be passed to ranger

object

a Seurat or data frame object

genes_use

a character vector indicating which genes to use in the classification. currently implemented only for Seurat objects. (for data frames one can simply subset the input data frame)

cluster

a cluster name for which the markers will be found

pval_cutoff

p value cutoff for the markers

imp_method

importance method, either of "janitza" or "altmann"

num.trees

number of trees to be build using ranger

return_what

a subset of "ranger_fit", "importances_ranger", "signif_importances_ranger", defaults to signif_importances_ranger

warn.imp.method

logical indicating wether warning should be issued when few negative importances are found to calculate the p.values in ranger.

return

ranger_fit, importances_ranger, signif_importances_ranger

Value

by default returns a data frame with the importances and p values but this behavior can be modified by the

Functions

Examples

1
2
3
4
5
6
7
8
    head(ranger_importances(Seurat::pbmc_small, cluster = 'ALL', warn.imp.method = FALSE))
    
#          importance pvalue     gene
# HLA-DPB1   8.226410      0 HLA-DPB1
# S100A9     6.648748      0   S100A9
# S100A8     6.537872      0   S100A8
# HLA-DQA1   3.103721      0 HLA-DQA1
# GNLY       1.779237      0     GNLY

jspaezp/sctree documentation built on April 30, 2020, 10:36 p.m.