Description Usage Arguments Value Functions Examples
Calculates ranger-based variable importances for data frames and Seurat objects
1 2 3 4 5 6 7 | ranger_importances(x, ...)
FindAllMarkers_ranger.Seurat(
object,
genes_use = Seurat::VariableFeatures(object),
...
)
|
... |
additional arguments to be passed to ranger |
object |
a Seurat or data frame object |
genes_use |
a character vector indicating which genes to use in the classification. currently implemented only for Seurat objects. (for data frames one can simply subset the input data frame) |
cluster |
a cluster name for which the markers will be found |
pval_cutoff |
p value cutoff for the markers |
imp_method |
importance method, either of "janitza" or "altmann" |
num.trees |
number of trees to be build using ranger |
return_what |
a subset of "ranger_fit", "importances_ranger", "signif_importances_ranger", defaults to signif_importances_ranger |
warn.imp.method |
logical indicating wether warning should be issued when few negative importances are found to calculate the p.values in ranger. |
return |
ranger_fit, importances_ranger, signif_importances_ranger |
by default returns a data frame with the importances and p values but this behavior can be modified by the
FindAllMarkers_ranger.Seurat
: Calculate variable importances to each cluster in a Seurat object
1 2 3 4 5 6 7 8 | head(ranger_importances(Seurat::pbmc_small, cluster = 'ALL', warn.imp.method = FALSE))
# importance pvalue gene
# HLA-DPB1 8.226410 0 HLA-DPB1
# S100A9 6.648748 0 S100A9
# S100A8 6.537872 0 S100A8
# HLA-DQA1 3.103721 0 HLA-DQA1
# GNLY 1.779237 0 GNLY
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.